Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T11:04:50.609Z Has data issue: false hasContentIssue false

Mineral Preferred Orientation and Microstructure in the Posidonia Shale in Relation to Different Degrees of Thermal Maturity

Published online by Cambridge University Press:  01 January 2024

Waruntorn Kanitpanyacharoen
Affiliation:
Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720 USA
Frans B. Kets
Affiliation:
School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
Hans-Rudolf Wenk*
Affiliation:
Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720 USA
Richard Wirth
Affiliation:
GeoForschungsZentrum, Potsdam, 14473, Germany
*
*E-mail address of corresponding author: wenk@berkeley.edu

Abstract

The thermal maturity of samples of the Posidonia Shale collected from the Hils Syncline, northern Germany, varies significantly as a function of location indicating variations in local history. Synchrotron X-ray diffraction was used to document the composition and the preferred orientation of four samples of the Posidonia Shale with different degrees of maturity (0.68–1.45%, Ro) to determine possible effects on diagenesis and preferred orientation. Overall, the degree of preferred orientation of all clay minerals (illite-smectite, illite-mica, and kaolinite) and in all samples is similar, with (001) pole figure maxima ranging from 3.7 to 6.3 multiples of a random distribution (m.r.d.). Calcite displays weak preferred orientation, with c axes perpendicular to the bedding plane (1.1–1.3 m.r.d.). Other constituent phases such as quartz, feldspars, and pyrite have a random orientation distribution. The difference in thermal history, which causes significant changes in the maturity of organic matter, influenced the preferred orientation of clay minerals only marginally as most of the alignment seems to have evolved early in their history. Synchrotron X-ray microtomography was used to characterize the three-dimensional microstructure of a high-maturity sample. Low-density features, including porosity, fractures, and kerogen, were observed to be elongated and aligned roughly parallel to the bedding plane. The volume of low-density features was estimated to be ~7 vol.%, consistent with previous petrophysical measurements of porosity of 8–10 vol.%. Transmission electron microscopy analysis of samples with different degrees of maturity (0.74%Ro and 1.45%Ro) was used to document microstructures at the nanoscale as well as the presence of kerogen. In the high-maturity sample, pores were less abundant while minerals were more deformed as shown by fractured calcite and by kinked and folded illite. Some of the porosity was aligned with clay platelets.

Type
Article
Copyright
Copyright © Clay Minerals Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aplin, A.C. Matenaar, I.F. McCarty, D.K. and van der Pluijm, B.A., 2006 Influence of mechanical compaction and clay mineral diagenesis on the microfabric and porescale properties of deep-water Gulf of Mexico mudstones Clays and Clay Minerals 54 500514.CrossRefGoogle Scholar
Bachrach, R., 2011 Elastic and resistivity anisotropy of shale during compaction and diagenesis: Joint effective medium modeling and field observations Geophysics 76 E175E186.CrossRefGoogle Scholar
Baker, D.W. Chawla, K.S. and Krizek, R.J., 1993 Compaction fabrics of pelites: experimental consolidation of kaolinite and implications for analysis of strain in slate Journal of Structural Geology 15 11231137.CrossRefGoogle Scholar
Bernard, S. Horsfield, B. Schulz, H.-M. Schreiber, A. Wirth, R. Vu, T.T.A. Perssen, F. Könitzer, S. Volk, H. Sherwood, N. and Fuentes, D., 2010 Multi-scale detection of organic signatures provides insights into gas shale properties and evolution Chemie der Erde 70 119133.CrossRefGoogle Scholar
Bernard, S. Horsfield, B. Schulz, H.-M. Wirth, R. and Schreiber, A., 2012 Geochemical evolution of organic-rich shales with increasing maturity: a STXM and TEM study of the Posidonia Shale (Lower Toarcian, nothern Germany) Marine and Petroleum Geology 31 7089.CrossRefGoogle Scholar
Best, M.E. and Katsube, T. J., 1995 Shale permeability and its significance in hydrocarbon exploration The Leading Edge 14 165170.CrossRefGoogle Scholar
Bilgili, F. Götze, H.-J. Pašteka, R. Schmidt, S. and Hackney, R., 2009 Intrusion versus inversion - a 3D density model of the southern rim of the Northwest German Basin International Journal of Earth Sciences 98 571583.CrossRefGoogle Scholar
Bish, D.L., 1993 Rietveld refinement of kaolinite structure at 1.5 K Clays and Clay Minerals 41 738744.CrossRefGoogle Scholar
Curtis, C.D. Lipshie, S.R. Oertel, G. and Pearson, M.J., 1980 Clay orientation in some Upper Carboniferous mudrocks, its relationship to quartz content and some inferences about fissility, porosity and compactional history Sedimentology 27 333339.CrossRefGoogle Scholar
Curtis, M.E. Ambrose, R.J. and Sondergeld, C.H., 2010.Structural characterization of gas shales on the micro- and nano-Scales Canadian Unconventional Resources and International Petroleum ConferenceCrossRefGoogle Scholar
Day-Stirrat, R. Loucks, R.G. Milliken, K.L. Hillier, S. and van der Pluijm, B., 2008 Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A) Clays and Clay Minerals 56 100111.CrossRefGoogle Scholar
Day-Stirrat, R.J. Aplin, A.C. Środoń, J. and van der Pluijm, B.A., 2008 Diagenetic reorientation of phyllosilicate minerals in Paleogene mudstones of the Podhale Basin, southern Poland Clays and Clay Minerals 56 100111.CrossRefGoogle Scholar
Deutloff, O. Teichmüller, M. Teichmüller, R. and Wolf, M., 1980 Inkohlungsuntersuchungen im Mesozoikum des Massivs von Vlotho (Niedersächsisches Tektogen) Neues Jahrbuch für Geologie und Paläontologie Monatshefte 6 321341.CrossRefGoogle Scholar
Dierick, M. Masschaele, B. and Van Hoorebeke, L., 2004 Octopus, a fast and user-friendly tomographic reconstruction package developed in Lab View1 Measurement Science and Technology 15 13661370.CrossRefGoogle Scholar
Doornenbal, J.C. and Stevenson, A.G., 2010 Petroleum Geological Atlas of the southern Permian Basin Area Houten, The Netherlands European Association of Geoscientists and Engineers Publications BV 354.Google Scholar
Downs, R.T. and Hall-Wallace, M., 2003 The American Mineralogist Crystal Structure Database American Mineralogist 88 247250.Google Scholar
Draege, A. Jakobsen, M. and Johansen, T.A., 2006 Rock physics modeling of shale diagenesis Petroleum Geoscience 12 4957.CrossRefGoogle Scholar
Elfallagh, F. and Inkson, B.J., 2009 3D analysis of crack morphologies in silicate glass using FIB tomography Journal of the European Ceramic Society 29 4752.CrossRefGoogle Scholar
Gualtieri, A.F., 2000 Accuracy of XRPD QPA using the combined Rietveld-RIR method Journal of Applied Crystallography 33 267278.CrossRefGoogle Scholar
Heim, S. Guttmann, P. Rehbein, S. Werner, S. and Schneider, G., 2009 Energy-tunable full-field X-ray microscopy Cryo-tomography and full-field spectroscopy with the new BESSY TXM. Journal of Physics: Conference Series 186 012041.Google Scholar
Ho, N.-C. Peacor, D.R. and van der Pluijm, B.A., 1995 Reorientation of phyllosilicates in mudstones-to-slate transition at Lehigh Gap, Pennsylvania Journal of Structural Geology 17 345356.CrossRefGoogle Scholar
Ho, N.-C. Peacor, D.R. and van der Pluijm, B.A., 1999 Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite-illite transition Clays and Clay Minerals 47 495504.Google Scholar
Holzner, C. Feser, M. Vogt, S. Hornberger, B. Baines, S.B. and Jacobsen, C., 2010 Zernike phase contrast in scanning microscopy with X-rays Nature Physics 6 883887.CrossRefGoogle ScholarPubMed
Hornby, B.E. Schwartz, L.M. and Hudson, J.A., 1994 Anisotropic effective-medium modelling of the elastic properties of shales Geophysics 59 15701583.CrossRefGoogle Scholar
Horsfield, B. Littke, R. Mann, U. Bernard, S. Vu, T. diPrimio, R. and Schulz, H., 2010.Shale Gas in the Posidonia Shale, Hils Area, Germany AAPG Search and Discovery Article # 110126Google Scholar
Jenkins, C.D. Boyer, C.M. II, 2008 Coalbed- and Shale- Gas Reservoirs Journal of Petroleum Technology 60 9299.CrossRefGoogle Scholar
Johansen, T.A. Ruud, B.O. and Jakobsen, M., 2004 Effect of grain scale alignment on seismic anisotropy and reflectivity of shales Geophysical Prospecting 52 133149.CrossRefGoogle Scholar
Kanitpanyacharoen, W. Wenk, H.-R. Kets, F. and Lehr, B.C., 2011 Texture and anistropy analysis of Qusaiba shales Geophysical Prospecting 59 536556.CrossRefGoogle Scholar
Keller, L.M. Holzer, L. Wepf, R. and Gasser, P., 2011 3D Geometry and topology of pore pathways in Opalinus clay: Implications for mass transport Applied Clay Science 52 8595.CrossRefGoogle Scholar
Kus, J. Cramer, B. and Kockel, F., 2005 Effects of a Cretaceous structural inversion and a postulated high heat flow event on petroleum system of the western Lower Saxony Basin and the charge history of the Apeldorn gas field Netherlands Journal of Geoscience 84 324.CrossRefGoogle Scholar
Leythaeuser, D. Alterbäumer, F.J. and Schaefer, R.G., 1980 Effect of an igneous intrusion on maturation of organic matter in Lower Jurassic shales from NW-Germany Physics and Chemistry of the Earth 12 133139.CrossRefGoogle Scholar
Littke, R. and Rullkötter, J., 1987 Mikroskopische und makroskopische Unterschiede zwischen Profilen unreifen und reifen Posidonienschiefers ans der Hilsmulde Facies 17 171180.CrossRefGoogle Scholar
Littke, R. Baker, D.R. and Leythaeuser, D., 1988 Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities Organic Geochemistry 13 549559.CrossRefGoogle Scholar
Littke, R. Baker, D.R. Leythaeuser, D. Rullkötter, J., Tyson, R.V., 1991 Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hils Syncline, northern Germany Modern and Ancient Continental Shelf Anoxia London Geological Society 311333.Google Scholar
Littke, R. Baker, D.R. Rullkötter, J., Welte, D.H. Horsfield, B. and Baker, D.R., 1997 Deposition of petroleum source rocks Petroleum and Basin Evolution Heidelberg, Germany Springer 271333.CrossRefGoogle Scholar
Lonardelli, I. Wenk, H.-R. and Ren, Y., 2007 Preferred orientation and elastic anisotropy in shales Geophysics 72 D33D40.CrossRefGoogle Scholar
Loucks, R.G. Reed, R.M. Ruppel, S. and Jarvie, D.M., 2009 Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale Journal of Sedimentary Research 79 848861.CrossRefGoogle Scholar
Lutterotti, L. Matthies, S. Wenk, H.-R. Shultz, A.J. and Richardson, J.W., 1997 Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra Journal of Applied Physics 81 594600.CrossRefGoogle Scholar
Mann, U., 1987 Veränderung von Mineralmatrix und Porosität eines Erdölmuttergesteins durch einen Intrusivkörper (Lias epsilon 2-3: Hilsmulde, NW-Deutschland) Facies 17 181188.CrossRefGoogle Scholar
Mann, U. Leythaeuser, D. and Müller, P.J., 1986 Relation between source rock properties and wireline log parameters: An example from Lower Jurassic Posidonia Shale, NWGermany Organic Geochemistry 10 11051112.CrossRefGoogle Scholar
Marone, F. Hintermüller, C. McDonald, S. Abela, R. Mikuljan, G. Isenegger, A. and Stampanoni, M., 2009 Xray Tomographic Microscopy at TOMCAT Journal of Physics: Conference Series 186 012042.Google Scholar
Martini, A.M. Walter, L.M. Ku, T.C.W. Budai, J.M. McIntosh, J.C. and Schoell, M., 2003 Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan basin AAPG Bulletin 87 13551375.CrossRefGoogle Scholar
Matthies, S. and Vinel, G.W., 1982 On the reproduction of the orientation distribution function of textured samples from reduced pole figures using the concept of conditional ghost correction Physica Status Solidi B 122 K111K114.Google Scholar
Midgley, P.A. Ward, E.P.W. Hungria, A.B. and Thomas, J.M., 2007 Nanotomography in the chemical, biological and materials sciences Chemical Society Reviews 36 14771494.CrossRefGoogle ScholarPubMed
Militzer, B. Wenk, H.-R. Stackhouse, S. and Stixrude, L., 2011 First-principles calculation of the elastic moduli of sheet silicates and their application to shale anisotropy American Mineralogist 96 125137.CrossRefGoogle Scholar
Muñoz, Y.A. Littke, R. and Brix, M.R., 2007 Fluid systems and basin evolution of the western Lower Saxony Basin, Germany Geofluids 7 335355.CrossRefGoogle Scholar
Plançon, A. Tsipurski, S.I. and Drits, V.A., 1985 Calculation of intensity distribution in the case of oblique texture electron diffusion Journal of Applied Crystallography 18 191196.CrossRefGoogle Scholar
Petmecky, S. Meier, L. Reiser, H. and Littke, R., 1999 High thermal maturity in the Lower Saxony Basin: Intrusion or deep burial? Tectonophysics 304 317344.CrossRefGoogle Scholar
Rietveld, H.M., 1969 A profile refinement method for nuclear and magnetic structures Journal of Applied Crystallography 2 6571.CrossRefGoogle Scholar
Rullkötter, J. Leythaeuser, D. Horsfield, B. Littke, R. Mann, U. Müller, P.J. Radke, M. Schaefer, R.G. Schenk, H.-J. Schwochau, K. Witte, E.G. and Welte, D.H., 1988 Organic matter maturation under the influence of a deep intrusive heat source: A natural experiment for quantitation of hydrocarbon generation and expulsion from a petroleum source rock (Toarcian shale, northern Germany) Organic Geochemistry 13 847856.CrossRefGoogle Scholar
Sayers, C.M., 1994 The elastic anisotropy of shales Journal of Geophysical Research 99 767774.CrossRefGoogle Scholar
Schulz, H.-M. Horsfield, B. and Sachsenhofer, R.F., 2010 Shale gas in Europe: a regional overview and current research activities Petroleum Geology Conference series 7 10791085.CrossRefGoogle Scholar
Sintubin, M., 1994 Clay fabrics in relation to the burial history of shales Sedimentology 41 11611169.CrossRefGoogle Scholar
Slaughter, M. and Hill, R.J., 1991 The influence of organic matter in organogenic dolomization Journal of Sedimentary Research 61 296303.CrossRefGoogle Scholar
Stampanoni, M. Groso, A. Isenegger, A. Mikuljan, G. Chen, Q. Bertrand, A. Henein, S. Betemps, R. Frommherz, U. Böhler, P. Meister, D. Lange, M. and Abela, R., 2006 Trends in synchrotron-based tomographic imaging: the SLS experience Proceedings of SPIE 6318 63180M.CrossRefGoogle Scholar
Tissot, B.O. and Welte, D.D., 1984 Petroleum Formation and Occurrence 2nd edition Berlin Springer-Verlag.CrossRefGoogle Scholar
Valcke, S.L.A. Casey, M. Lloyd, G.E. Kendall, J.-M. and Fisher, Q.J., 2006 Lattice preferred orientation and seismic anisotropy in sedimentary rocks Geophysical Journal International 166 652666.CrossRefGoogle Scholar
Vernik, L., 1993 Microcrack-induced versus intrinsic elastic anisotropy in mature hc-source shales Geophysics 58 17031706.CrossRefGoogle Scholar
Vernik, L., 1994 Hydrocarbon-generation-induced microcracking of source rocks Geophysics 59 555563.CrossRefGoogle Scholar
Vernik, L. and Nur, A., 1992 Ultrasonic velocity and anisotropy of hydrocarbon source rock Geophysics 57 727735.CrossRefGoogle Scholar
Voltolini, M. Wenk, H.-R. Mondol, N.H. Bjørlykke, K. and Jahren, J., 2009 Anisotropy of experimentally compressed kaolinite-illite-quartz mixtures Geophysics 74 1323.CrossRefGoogle Scholar
Wang, Y. De Carlo, F.D. Mancini, C. McNulty, I. Tieman, B. Bresnahan, J. Foster, I. Insley, J. Lane, P. von Laszewski, G. Kesselman, C. Su, M.-H. and Thiebaux, M., 2001 A high-throughput X-ray microtomography system at the Advanced Photon Source Review of Scientific Instruments 72 20622068.CrossRefGoogle Scholar
Wenk, H.-R. Matthies, S. Donovan, J. and Chateigner, D., 1998 Beartex: A windows-based program system for quantitative texture analysis Journal of Applied Crystallography 31 262269.CrossRefGoogle Scholar
Wenk, H.-R. Voltolini, M. Mazurek, M. Loon, L.R.V. and Vinsot, A., 2008 Preferred orientations and anisotropy in shales: Callovo-Oxfordian shale (France) and Opalinus clay (Switzerland) Clays and Clay Minerals 56 285306.CrossRefGoogle Scholar
Wenk, H.-R. Kanitpanpanyacharoen, W. and Voltolini, M., 2010 Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist Journal of Structural Geology 32 478489.CrossRefGoogle Scholar