Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-21T02:51:22.985Z Has data issue: false hasContentIssue false

Intercalation of Salts in Halloysite

Published online by Cambridge University Press:  01 July 2024

R. M. Carr
Affiliation:
Chemistry Department, University of Otago, Dunedin, New Zealand
N. Chaikum
Affiliation:
Chemistry Department, Mahidol University, Bangkok 4, Thailand
N. Patterson
Affiliation:
Control Laboratory, N. Z. Aluminium Smelters, Invercargill, New Zealand

Abstract

Several new salt intercalation complexes of halloysite have been prepared and characterized using X-ray powder diffraction techniques taking into account both the position and the shape of the d001 peaks. The amount of intercalated ion in some fully complexed halloysites has been directly determined using conventional analytical techniques. The results show that less than half of the theoretical amount of salt is intercalated into the clay; the amount of salt depending on its nature and, where hydrolyzable ions are present, on the pH. Infrared spectra taken of some complexes give an indication of the nature of the interaction within interlayer space and elsewhere. The interactions are weak and are either dipolar attractions or hydrogen bonds. The ions which show the greatest tendency to intercalate with halloysite are water structure-breaking cations or hydrogen-bonding anions.

Резюме

Резюме

Были получены несколько новых комплексов галлуазита, переслаивающегося с солью, которые охарактеризованы с использованием порошкового метода рентгеноструктурного анализа, причем во внимание принимались как положение, так и форма пиков d001. Количество внедрившихся ионов в некоторых полностью укомплектованных галлуазитах определялось с использованием обычных аналитических методов. Результаты показывают, что менее, чем половина теоретического количества соли внедрилась в глину. Количество соли зависит от ее природы и, если присутствуют ионы, поддающиеся гидролизу, от pH. Инфракрасные спектры некоторых комплексов указывают на природу взаимодействия в межслойном пространстве и других местах. Взаимодействия слабы и являются или дипольным притяжением, или водородными связями. Ионы, которые проявляют наибольшую тенденцию к внедрению в галлуазит, являются водными структуро-разрушающими катионами или водородо-связующими анионами.

Kurzreferat

Kurzreferat

Etliche neue Salzeinbettungskomplexe von Halloysit wurden prepariert und durch Röntgenpulverdiagramme charakterisiert, indem sowohl die Position wie auch die Form der d001 Signale in Betracht gezogen wurden. Die Menge von eingebetteten Ionen wurde unmittelbar mit konventionellen, analytischen Techniken in einigen vollkomplexierten Halloysiten bestimmt. Die Resultate zeigen, daß weniger als die Hälfte der theoretischen Menge des Salzes in den Ton eingebettet ist. Die Menge des Salzes hängt von ihrer Natur, und falls die Ionen hydrolisierbar sind, von dem pH ab. Infrarotspektra, welche von einigen Komplexen aufgenommen wurden, geben Anhaltspunkte über die Natur der Wechselwirkung in der Zwischenschicht ab. Diese Wechselwirkungen sind schwach und entweder dipolare Anziehungen oder Wasserstoffbindungen. Diejenigen Ionen, die die größte Tendenz zur Einbettung in Halloysiten zeigen, sind Wasserstruktur- brechende Kationen oder Wasserstoff-bindende Anion

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Askenasy, P. E., Dixon, J. B. and McKee, T. R. (1973) Spheroidal halloysite in a Guatemalan soil: Soil Sci. Soc. Am. Proc. 37, 799803.CrossRefGoogle Scholar
Bingham, E. C. (1941) Fluidity of electrolytes: J. Phys. Chem. 45, 885903.CrossRefGoogle Scholar
Brindley, G. W. (1961) Kaolin, serpentine, and kindred minerals. In The X-ray Identification and Crystal Structures of Clay Minerals (Edited by Brown, G.) , pp. 51131, Mineral. Soc., London.Google Scholar
Buswell, A. M. and Dudenbostel, B. F. (1941) Spectroscopic studies of base-exchange materials: J. Am. Chem. Soc. 63, 25542559.CrossRefGoogle Scholar
Carr, R. M. and Chih, H. (1971) Complexes of halloysite with organic compounds: Clay Miner. 9, 153166.CrossRefGoogle Scholar
Cashen, G. H. (1959) Electric charges of kaolin: Trans. Faraday Soc. 55, 477486.CrossRefGoogle Scholar
Churchman, G. J., Aldridge, L. P. and Carr, R. M. (1972) The relationship between the hydrated and dehydrated states of an halloysite: Clays & Clay Minerals 20, 241246.CrossRefGoogle Scholar
Churchman, G. J. and Carr, R. M. (1975) The definition and nomenclature of halloysites: Clays & Clay Minerals 23, 382388.CrossRefGoogle Scholar
Dickman, S. R. and Bray, R. H. (1941) Replacement of absorbed phosphate from kaolinite by fluoride: Soil Sci. 52, 263275.CrossRefGoogle Scholar
Garrett, W. G. and Walker, G. F. (1959) The cation-exchange capacity of hydrated halloysite and the formation of halloysite-salt complexes: Clay Miner. Bull. 4, 7580.CrossRefGoogle Scholar
Hofmann, U. and Reingraber, R. (1969) Einlagerungsverbindungen in wasserarmem halloysit: Z. Anorg. Allg. Chem. 369, 208211.CrossRefGoogle Scholar
Hughes, I. R. (1966) Mineral changes of halloysite on drying: N.Z. J. Sci. 9, 103113.Google Scholar
MacEwan, D. M. C. (1948) Complexes of clays with organic compounds: Trans. Faraday Soc. 44, 349367.CrossRefGoogle Scholar
McKee, T. R., Dixon, J. B., Whitehouse, G. and Harling, D. F. (1973) Study of Te Puke halloysite by a high resolution electron microscope: Proc. 31st Annu. Electron Microsc. Soc. Am. Meet., Claitor Publ., Baton Rouge, La. pp. 200201.CrossRefGoogle Scholar
Oliver, F. H. (1966) The determination of fluorine or phosphorus in organic compounds by a microtitrimetric method: Analyst 91, 771774.CrossRefGoogle Scholar
Riviere, A. (1948) On the base exchange capacity of halloysites: Summary in Clay Miner. Bull. 1, 121.Google Scholar
Serratosa, J. M., Hidalgo, A. and Vinas, J. M. (1963) Infrared study of the OH groups in Kaolin minerals: Proc. Int. Clay Conf., Stockholm 1, 1726.Google Scholar
Verwey, E. J. W. (1942) The reciprocal effect of ions and solvent in aqueous electrolyte solutions: Ret. Trav. Chim. 61, 127142.CrossRefGoogle Scholar
Wada, K. (1958) Adsorption of alkali chloride and ammonium halide on halloysite: Soil Plant Food 4, 137144.CrossRefGoogle Scholar
Wada, K. (1959a) Oriented penetration of ionic compounds between the silicate layers of halloysite: Am. Mineral. 44, 153165.Google Scholar
Wada, K. (1959b) An interlayer complex of halloysite with ammonium chloride: Am. Mineral. 44, 12371247.Google Scholar
Wada, K. (1961) Lattice expansion of kaolin minerals by treatment with potassium acetate: Am. Mineral. 46, 7891.Google Scholar
Wada, K. (1965) Intercalation of water in kaolin minerals: Am. Mineral. 50, 924941.Google Scholar
Weiss, A., Mehler, A., Koch, G. and Hofmann, U. (1956) Uber das anionenaustauschvermogen der tonmineralien: Z. Anorg. Allg. Chem. 284, 247271.CrossRefGoogle Scholar
Yariv, S. and Shoval, S. (1975) The nature of the interaction between water molecules and kaolin-like layers in hydrated halloysite: Clays & Clay Minerals 23, 473474.CrossRefGoogle Scholar