Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-12T02:51:29.499Z Has data issue: false hasContentIssue false

Cross-Linked Smectites. I. Synthesis and Properties of Hydroxy-Aluminum-Montmorillonite

Published online by Cambridge University Press:  01 July 2024

N. Lahav
Affiliation:
Department of Soil and Water Science, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
U. Shani
Affiliation:
Department of Soil and Water Science, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
J. Shabtai
Affiliation:
Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel

Abstract

A stable porous system consisting of montmorillonite cross-linked by Al-hydroxide oligomers was synthesized by reacting at room temperature an aqueous solution of such oligomers with a unit-layer dispersion of montmorillonite. The resulting cross-linked montmorillonite (Al-CLM) is a nonswelling material, showing basal spacings of 14.4 to 18.8 Å after air drying and between 14.2 to 18.0 Å after treatment at 110°C. The basal spacing is found to depend on the age and OH/Al ratio of the Al-hydroxide solution, as well as on the relative amounts of the two reactants. A specific surface area of 160 m2/g and a diffraction pattern with a dominant basal spacing of 17.5 Å is obtained by using Al-hydroxide with OH/Al = 1.85, aged for at least 5 days, and by applying an Al/montmorillonite ratio greater than 1.5 in the cross-linking process. The basal spacing of Al-CLM remains essentially unchanged after heating at 220°C, while the specific surface area is not affected by heat treatment up to 480°C.

Two possible configurations of Al-hydroxide oligomers, homogeneously distributed between parallel montmorillonite unit-layers, were considered in order to account for the basal spacing of 17.5–18.8 Å, viz. (a) stacking of two oligomeric ring units in parallel orientation relative to the clay lamellae and (b) perpendicular orientation of individual oligomeric units.

Резюме

Резюме

Устойчивая пористая система, состоящая из монтмориллонита, поперечно-связанного олигомером гидроокиси Al, была синтезирована в результате реакции, пртекавшей при комнатной температуре, между водным раствором этих олигомеров и диспергированным однородно-слоистым монтмориллонитом. Образованный поперечно-связанный монтмориллонит (Al-ПСМ) представляет собой неразбухающий материал с основными промежутками от 14,4 до 18,8 Å после воздушной просушки и от 14,2 до 18,0 Å после обработки при 110°C. Было обнаружено, что величина основных промежутков зависит от возраста и отношения OH/Al раствора гидроокиси а также от относительных количеств двух реагентов. Специфическая площадь поверхности в 160 м2 / г и дифракционная картина с доминирующим основным промежутком в 17,5 Å были достигнуты с использованием гидроокиси Al c OH/Al=1,85, имеющим возраст не менее 5 дней и использованием отношения А1/монтмориллонит больше 1,5 при процессе поперечного связывания. Основной промежуток Al-ПСМ остается существенно неизменным после прогревания при 2 20°C, в то время как специфическая площадь поверхности не изменяется при тепловой обработке до 480°C.

Были рассмотрены две возможные конфигурации олигомеров гидроокиси Al, гомогенно распределенных между параллельными однородными слоями монтмориллонита, чтобы объяснить основной промежуток в 17,5-18,8 Å, /a/ пакет двух олигомерных колец,параллельно ориентированных по отношению к слоям глины и/б/ перпендикулярно ориентированые отдельные олигомеры.

Kurzreferat

Kurzreferat

Ein stabiles, poröses System, welches aus mit Al-Hydroxyd oligomeren querverbundenen Montmorillonit besteht, wurde synthetisiert indem bei Zimmertemperatur eine wässrige Lösung dieser Oligomere mit einer Einheitsschichtdispersion von Montmorillonit reagiert wurde.Der resultierende querverbundene Montmorillonit (Al-CLM) ist ein quellfestes Material, das einen Basisabstand von 14,4 bis 18,8 A nach Lufttrocknen und zwischen 14,2 und 18,0 A nach Behandlung bei 110° C besitzt. Es wurde herausgefunden daß der Basisabstand sowohl vom Alter und OH/Al Verhältnis der Al-Hydroxyd-lösung wie auch von den relativen Mengen der beiden reagierenden Substanzen abhängt.Eine spezifische Oberfläche von 160 m2/g und ein Diffraktionsmuster mit einem dominanten Basisabstand von 17,5 A wird erhalten indem Al-Hydroxyd mit OH/AL = 1,85, mindestens 5 Tage lang gealtert, benutzt wird und indem ein Al/Montmorillonit Quotient für die Querverbindung benutzt wird, der größer als 1,5 ist.Der Basisabstand des Al-CLM bleibt im wesentlichen unverändert nach Erhitzen bei 220°C, während die spezifische Oberfläche nicht von Hitzebehandlung bis 480°C beeinflußt ist. Zwei denkbare Konfigurationen der Al-Hydroxydoligomere, homogen verteilt zwischen parallelen Montmorilloniteinzelschichten, wurden erwogen, um den Basisabstand von 17,5–18,8 A zu begründen, nämlich (a) aufstapeln von zwei oligomeren Ringeinheiten in parallelzu den Tonlamellen- Orientierung und (b) senkrechte Orientierung von individuellen oligomeren Einheiten.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlrichs, J. L. (1968) Hydroxyl stretching frequencies of synthetic Ni, Al, and Mg hydroxy interlayers in expanding clays: Clays & Clay Minerals 16, 6372.CrossRefGoogle Scholar
Anderson, D. M. and Reynolds, R. C. (1966) Umiat bentonite: an unusual montmorillonite from Umiat, Alaska: Am. Mineral. 51, 14431455.Google Scholar
Bailey, S. W. and Brown, B. E. (1962) Chlorite polytypism: I. Regular and semi-random one-layer structures: Am. Mineral. 47, 819830.Google Scholar
Barnhisel, R. I. and Rich, C. I. (1963) Gibbsite formation from aluminum interlayers in montmorillonite: Soil Sci. Soc. Am. Proc. 27, 632635.CrossRefGoogle Scholar
Barnhisel, R. I. and Rich, C. I. (1965) Gibbsite, Bayerite and nordstrandite formation as affected by anions, pH, and mineral surfaces: Soil Sci. Soc. Am. Proc. 29, 531534.CrossRefGoogle Scholar
Barnhisel, R. I. and Rich, C. I. (1966) Preferential hydroxyaluminum interlaying in montmorillonite and vermiculite: Soil Sci. Soc. Am. Proc. 30, 3539.CrossRefGoogle Scholar
Brindley, G. W. and Maksimovic, Z. (1974) The nature and nomenclature of hydrous nickel-containing silicates: Clay Miner. 10, 271277.CrossRefGoogle Scholar
Brindley, G. W. and DeSouza, J. V. (1975) A golden-colored ferrinickel chloritic mineral from Morro do Niquel, Minas Gerais, Brazil: Clays & Clay Minerals 23, 1115.CrossRefGoogle Scholar
Brown, G. and Newman, A. C. D. (1973) The reactions of soluble aluminum with montmorillonite: J. Soil Sci. 24, 339354.CrossRefGoogle Scholar
Brydon, J. E. and Kodama, H. (1966) The nature of aluminum hydroxide montmorillonite complexes: Am. Mineral. 51, 875888.Google Scholar
Bundy, W. M. and Murray, H. H. (1973) The effect of aluminum on the surface properties of kaolinite: Clays & Clay Minerals 21, 295302.CrossRefGoogle Scholar
Caillere, S. and Henin, S. (1949) Experimental formation of chlorite from montmorillonite: Mineral. Mag. 28, 612620.Google Scholar
Carstea, D. D. (1968) Formation of hydroxy-Al and Fe-interlayers in montmorillonite and vermiculite: Influence of particle size and temperature: Clays & Clay Minerals 16, 231238.CrossRefGoogle Scholar
Carstea, D. D., Harward, M. E. and Knox, E. G. (1970) Comparison of iron and aluminum hydroxy interlayers in montmorillonite and vermiculite: I. Formation: Soil Sci. Soc. Am. Proc. 34, 517521.CrossRefGoogle Scholar
Davey, B. G. and Low, P. F. (1968) Clay-water interaction as affected by hydrous aluminum oxide films: 9th Int. Congr. Soil Sci. Adelaide, Australia, 1, 607616.Google Scholar
Davey, B. G. and Low, P. F. (1971) Physico-chemical properties of sols and gels of Na-montmorillonite with and without adsorbed hydrous aluminum oxide: Soil Sci. Soc. Am. Proc. 35, 230236.CrossRefGoogle Scholar
Davidtz, J. C. and Sumner, M. E. (1965) Blocked charges on clay minerals in sub-tropical soils: J. Soil Sci. 16, 270274.CrossRefGoogle Scholar
Deshpande, T. L., Greenland, D. J. and Quirk, J. P. (1964) Role of iron oxides in the bonding of soil particles: Nature 201, 107108.CrossRefGoogle Scholar
Dixon, J. B. and Jackson, M. L. (1959) Dissolution of interlayers from intergradient soil clays after preheating at 400°C: Science 129, 16161617.CrossRefGoogle Scholar
El-Rayah, H. M. E. and Rowell, D. L. (1973) The influence of iron and aluminum hydroxides on the swelling of Na-montmorillonite and the permeability of a Na-soil: J. Soil Sci. 24, 137144.CrossRefGoogle Scholar
El-Swaify, S. A. (1976) Changes in the physical properties of soil clays due to precipitated aluminum and iron hydroxides: II. Colloidal interactions in the absence of drying: Soil Sci. Soc. Am. Proc. 40, 516520.CrossRefGoogle Scholar
El-Swaify, S. A. and Emerson, W. W. (1975) Changes in the physical properties of soil clays due to precipitated aluminum and iron hydroxides: I. Swelling and aggregate stability after drying: Soil Sci. Soc. Am. Proc. 39, 10561063.CrossRefGoogle Scholar
Follett, E. A. C. (1965) The retention of amorphous colloidal ‘ferric hydroxide’ by kaolinites: J. Soil Sci. 16, 334341.CrossRefGoogle Scholar
Frink, C. R. (1965) Characterization of aluminum interlayers in soil clays: Soil Sci. Soc. Am. Proc. 29, 379382.CrossRefGoogle Scholar
Greenland, D. J. and Oades, J. M. (1968) Iron hydroxides and clay surfaces: 9th Int. Congr. Soil Sci. Trans. Adelaide, Australia, 1, 657668.Google Scholar
Grim, R. E. and Johns, W. D. (1954) Clay mineral investigation of sediments in the northern Gulf of Mexico: Clays & Clay Minerals. N.A.S.-N.R.C., Publ. 327, 81103.Google Scholar
Gupta, G. C. and Malik, W. U. (1969a) Transformation of montmorillonite to nickel-chlorite: Clays & Clay Minerals 17, 233239.CrossRefGoogle Scholar
Gupta, G. C. and Malik, W. U. (1969b) Fixation of hydroxy-aluminum by montmorillonite: Am. Mineral. 34, 16251632.Google Scholar
Heller-Kalai, L., Yariv, S. and Riemer, M. (1973) The formation of hydroxy interlayers in smectites under the influence of organic bases: Clay Miner. 10, 3540.CrossRefGoogle Scholar
Hem, J. D. and Roberson, C. E. (1967) Form and stability of aluminum hydroxide complexes in dilute solution: U.S. Geol. Surv. Water-Supply Pap. 1827-A. 55 pp.Google Scholar
Herrera, R. and Peech, M. (1970) Reaction of montmorillonite with iron (III): Soil Sci. Soc. Am. Proc. 34, 740742.CrossRefGoogle Scholar
Herrera, R., Miragaya, J. G. and Paolini, J. (1972) Effects of anions on the formation and stability of montmorillonite-Fe (III) complexes: Int. Clay Conf. Madrid, June, 2, 255266.Google Scholar
Hsu, Pa Ho (1968) Heterogeneity of montmorillonite surface and its effect on the nature of hydroxy-aluminum interlayers: Clays & Clay Minerals 16, 303311.CrossRefGoogle Scholar
Hsu, Pa Ho and Bates, T. F. (1964a) Formation of X-ray amorphous and crystalline aluminum hydroxide: Mineral. Mag. 33, 749768.Google Scholar
Hsu, Pa Ho and Bates, T. F. (1964b) Fixation of hydroxy-aluminum polymers by vermiculite: Soil Sci. Soc. Am. Proc. 28, 763769.CrossRefGoogle Scholar
Jackson, M. L. (1963a) Interlayering of expansible layer silicates in soils by chemical weathering: Clays & Clay Minerals 11, 2946.Google Scholar
Jackson, M. L. (1963b) Aluminum bonding in soils: A unifying principle in soil science: Soil Sci. Soc. Am. Proc. 27, 110.CrossRefGoogle Scholar
Kidder, G. and Reed, L. (1972) Swelling characteristics of hydroxy-aluminum interlayered clays: Clays & Clay Minerals 20, 1320.CrossRefGoogle Scholar
Kodama, H. and Webber, M. D. (1975) Clay inorganic studies, II. Hydroxy-aluminum phosphate-montmorillonite complexes: Can. J. Soil Sci. 55, 225233.CrossRefGoogle Scholar
Kruyt, H. R. (Editor) (1952) Colloid Science: Elsevier Publ. Co., New York.Google Scholar
Lahav, N. and Bresler, Eshel (1973) Exchangeable cation-structural parameter relationships in montmorillonite: Clays & Clay Minerals 21, 249255.CrossRefGoogle Scholar
Matijevic, E., Mathai, K. G., Ottewill, R. H. and Kerker, M. (1961) Detection of metal ion hydrolysis by coagulation III. Aluminum: J. Phys. Chem. 65, 826830.CrossRefGoogle Scholar
Meyers, N. L. and Aldrich, J. L. (1972) Correlation of X-ray IR, DTA, DTGA and CEC observations on Al-hydroxy interlayers: Int. Clay Conf. Madrid, 2, 243254.Google Scholar
Mortland, U. M. and Berkheiser, V. (1976) Triethylene diamine-clay complexes as matrices for adsorption and catalytic reactions: Clays & Clay Minerals 24, 6063.CrossRefGoogle Scholar
Nagasawa, K., Brown, G. and Newmann, A. C. D. (1974) Artificial alteration of biotite into a 14 Å layer silicate with hydroxy-aluminum interlayers: Clays & Clay Minerals 22, 241252.CrossRefGoogle Scholar
Paecht-Horowitz, M. (1973) Inorganic clays as possible prebiotic peptide templates: Isr. J. Che. 11, 369378.CrossRefGoogle Scholar
Patterson, J. H. and Tyree, S. Y. Jr. (1973) A light scattering study of the hydrolytic polymerization of aluminum: J. Colloid Interface Sci. 43, 389398.CrossRefGoogle Scholar
Rich, C. I. (1968) Hydroxy interlayers in expansible layer silicates: Clays & Clay Minerals 16, 1530.CrossRefGoogle Scholar
Rowell, D. L. (1965) Influence of positive charge on the inter and intra crystalline swelling of oriented aggregates of Na-montmorillonite in NaCl solutions: Soil Sci. 100, 340347.CrossRefGoogle Scholar
Sawhney, B. L. (1968) Aluminum interlayers in layer silicates: Effect of OH/Al ratio of Al solution, time of reaction, and type of structure: Clays & Clay Minerals 16, 157163.CrossRefGoogle Scholar
Schoen, R. and Roberson, C. E. (1970) Structures of aluminum hydroxide and geochemical implications: Am. Mineral. 55, 4377.Google Scholar
Schofield, R. K. and Samson, H. R. (1954) Flocculation of kaolinite due to the attraction of oppositely charged crystal faces: Discuss. Faraday Soc. 18, 135145.CrossRefGoogle Scholar
Shabtai, J., Frydman, N. and Lazar, R. (1976) Synthesis and catalytic properties of a 1,4-DIAZABICYCLO (2,2,2) octane-Montmorillonite system—A novel type of molecular sieve: Proc. 6th Int. Congr. Catal. B5, 17.Google Scholar
Slaughter, M. and Milne, I. H. (1960) The formation of chlorite-like structure from montmorillonite: Clays & Clay Minerals 7, 114124. 7th Natl. Clay Conf., N.A.S.-N.R.C.Google Scholar
Smith, R. W. and Hem, J. D. (1972) Effect of aging on aluminum hydroxide complexes in dilute aqueous solutions: U.S. Geol. Surv. Water-Supply Pap. 1827-D. 51 pp.Google Scholar
Somasiri, S. and Huang, P. M. (1972) Effect of hydrolysis of aluminum on competitive adsorption of potassium and aluminum by expansible phyllosilicates: Int. Clay Conf. Madrid, 2, 5363.Google Scholar
Sumner, M. E. (1963) Effect of iron oxides on positive and negative charges in clays and soils: Clay Miner. Bull. 5, 218226.CrossRefGoogle Scholar
Thiessen, P. A. (1942) Wecheselseitige Adsorption von Kolloiden: Z. Elektrochem. 48, 675681.Google Scholar
Tullock, R. J. and Roth, C. B. (1975) Stability of mixed iron and aluminum hydrous oxides on montmorillonite: Clays & Clay Minerals 23, 2732.CrossRefGoogle Scholar
Turner, R. C. and Brydon, J. E. (1965) Factors affecting the solubility of Al(OH)3 precipitated in the presence of montmorillonite: Soil Sci. 100, 176181.CrossRefGoogle Scholar
Turner, R. C. and Brydon, J. E. (1967) Effect of length of time of reaction on some properties of suspensions of Arizona bentonite, illite, and kaolinite in which aluminum hydroxide is precipitated: Soil Sci. 100, 111117.CrossRefGoogle Scholar
Van Olphen, H. (1963) Clay Colloid Chemistry: Interscience Publ., New York, 301 pp.Google Scholar
Vermeulen, A. C., Geus, J. W., Stol, R. J. and De Bruyn, P. L. (1975) Hydrolysis—precipitation studies of aluminum (III) solutions. I. Titration of acidified aluminum nitrate solutions: J. Colloid Interface Sci. 51, 449458.CrossRefGoogle Scholar
Weiss, A. and Russow, J. (1963) Über die Lafe der austauschbaren Kationen bei Kaolinit: Proc. Int. Clay Conf. Stockholm 1, 203213.Google Scholar
Wiese, G. R. and Healy, T. W. (1975) Heterocoagulation in mixed TiO2-Al2O3 dispersions: J. Colloid Interface Sci. 52, 458467.CrossRefGoogle Scholar
Wiewiora, A. and Szpila, K. (1975) Nickel containing regularly inter-stratified chlorite-saponite from Sklary, Lower Silesia, Poland: Clays & Clay Minerals 23, 9196.CrossRefGoogle Scholar