Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T06:31:06.309Z Has data issue: false hasContentIssue false

Comparison of Pretreatment Methods for Organic-matter Removal and their Effects on the Hydrogen Isotope (δ2H) Composition of Kaolinite

Published online by Cambridge University Press:  01 January 2024

Arpita Samanta*
Affiliation:
Department of Geology, Asutosh College, Kolkata 700026, India
M. K. Bera
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
Sruthi P. Sreenivasan
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
Anindya Sarkar
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

Abstract

The hydrogen isotopic composition (δ2H) of authigenic clay minerals has been used extensively in paleoclimate studies. The separation of clay minerals from sediments/soils, using various chemicals, is a prerequisite for isotope ratio measurements, where carbonate, Fe-(oxyhydr)oxides, and organic matter are removed successively from the sediments for a greater clay yield. The commonly adopted organic matter-removal method using hydrogen peroxide (H2O2) is thought to either alter directly the pristine δ2H values of the smectite clay minerals or to introduce organic hydrogen-bearing impurities through the ineffective removal of organic matter. The objective of the present study was to test whether H2O2 treatment can alter the δ2H values of kaolinite (Kln) by comparing two organic matter-removal methods, namely, H2O2 and disodium peroxodisulfate (Na2S2O8) combined with a neutral buffer. In doing so, kaolinite-rich, old (~56 Ma) sediment samples and pure kaolinite internal laboratory reference materials were used to understand the effectiveness and suitability of the above-mentioned methods in clay-sample preparation for δ2H measurements. The δ2H values of the H2O2-treated aliquots show smaller δ2H values than those for the Na2S2O8-treated aliquots. Estimated ambient water δ18O values (−4‰) from the Na2S2O8-treated aliquots agreed well with the bio-phosphate (fish vertebrae) based environmental water δ18O estimation (−3.3‰). The present study indicated, therefore, that δ2H values obtained after Na2S2O8 treatment are likely to be more realistic for paleoclimate reconstruction.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. U. (1963). An improved pretreatment for mineralogical analysis of samples containing organic matter. Clays and Clay Minerals, 10(1), 380388.CrossRefGoogle Scholar
Andrzejewski, K., & Tabor, N. J. (2020). Paleoenvironmental and paleoclimatic reconstruction of Cretaceous (Aptian-Cenomanian) terrestrial formations of Texas and Oklahoma using phyllosilicates. Palaeogeography, Palaeoclimatology, Palaeoecology, 543, 109491.CrossRefGoogle Scholar
Aparício, P., & Galán, E. (1999). Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay Minerals, 47(1), 1227.CrossRefGoogle Scholar
Bansal, M., Morley, R. J., Nagaraju, S. K., Dutta, S., Mishra, A. K., Selveraj, J., Kumar, S., Niyolia, D., Harish, S. M., Abdelrahim, O. B., & Hasan, S. E. (2022). Southeast Asian Dipterocarp origin and diversification driven by Africa-India floristic interchange. Science, 375(6579), 455460.CrossRefGoogle ScholarPubMed
Barnette, J. E., Lott, M. J., Howa, J. D., Podlesak, D. W., & Ehleringer, J. R. (2011). Hydrogen and oxygen isotope values in hydrogen peroxide. Rapid Communications in Mass Spectrometry, 25(10), 14221428.CrossRefGoogle ScholarPubMed
Bechtel, A., & Hoernes, S. (1993). Stable isotopic variations of clay minerals: A key to the understanding of Kupferschiefer-type mineralization. Germany. Geochimica et Cosmochimica Acta, 57(8), 17991816.CrossRefGoogle Scholar
Bechtel, A., Savin, S. M., & Hoernes, S. (1999). Oxygen and hydrogen isotopic composition of clay minerals of the Bahloul Formation in the region of the BouGrine zinc–lead ore deposit (Tunisia): Evidence for fluid–rock interaction in the vicinity of salt dome cap rock. Chemical Geology, 156(1–4), 191207.CrossRefGoogle Scholar
Bera, M. K., Bhattacharya, K., Sarkar, A., Samanta, A., Kumar, K., & Sahni, A. (2010). Oxygen isotope analysis of bone and tooth enamel phosphate from paleogene sediments: Experimental techniques and initial results. Journal of the Geological Society of India, 76(3), 275282.CrossRefGoogle Scholar
Bukalo, N., Ekosse, G. I., Odiyo, J., & Ogola, J. (2019). Paleoclimatic implications of hydrogen and oxygen isotopic compositions of Cretaceous-Tertiary kaolins in the Douala Sub-Basin Cameroon. Comptes Rendus Geoscience, 351(1), 1726.CrossRefGoogle Scholar
Cama, J., & Ganor, J. (2006). The effects of organic acids on the dissolution of silicate minerals: A case study of oxalate catalysis of kaolinite dissolution. Geochimica et Cosmochimica Acta, 70(9), 21912209.CrossRefGoogle Scholar
Chin, P. K. F., & Mills, G. L. (1991). Kinetics and mechanisms of kaolinite dissolution: Effects of organic ligands. Chemical Geology, 90(3–4), 307317.CrossRefGoogle Scholar
Coplen, T. B., & Qi, H. (2010). Applying the silver-tube introduction method for thermal conversion elemental analyses and a new δ2H value for NBS 22 oil. Rapid Communications in Mass Spectrometry, 24(15), 22692276.CrossRefGoogle Scholar
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436468.CrossRefGoogle Scholar
Doskočil, L., Grasset, L., Válková, D., & Pekař, M. (2014). Hydrogen peroxide oxidation of humic acids and lignite. Fuel, 134, 406413.CrossRefGoogle Scholar
Dutta, S., Bhattacharya, S., Mallick, M., Shukla, A. C., & Mann, U. (2012). Preserved lignin structures in early eocene Surat lignites, Cambay Basin, Western India. Journal of the Geological Society of India, 79(4), 345352.CrossRefGoogle Scholar
Gilg, H. A. (2000). D-H evidence for the timing of kaolinization in Northeast Bavaria, Germany. Chemical Geology, 170(1–4), 518.CrossRefGoogle Scholar
Gilg, H. A., & Sheppard, S. M. (1996). Hydrogen isotope fractionation between kaolinite and water revisited. Geochimica et Cosmochimica Acta, 60(3), 529533.CrossRefGoogle Scholar
Gilg, H.A., Girard, J.P., & Sheppard, S.M. (2004). Conventional and less conventional techniques for Hydrogen and oxygen isotope analysis of clays, associated minerals and pore waters in sediments and soils. In: Handbook of Stable Isotope Analytical Techniques. Elsevier, pp. 3861.CrossRefGoogle Scholar
Girard, J. P., Freyssinet, P., & Chazot, G. (2000). Unraveling climatic changes from intraprofile variation in oxygen and hydrogen isotopic composition of goethite and kaolinite in laterites: An integrated study from Yaou, French Guiana. Geochimica et Cosmochimica Acta, 64(3), 409426.CrossRefGoogle Scholar
Hyeong, K., & Capuano, R. M. (2000). The effect of organic matter and the H2O2 organic-matter-removal method on the δD of smectite-rich samples. Geochimica et Cosmochimica Acta, 64(22), 38293837.CrossRefGoogle Scholar
Jackson, M. L. (2005). Soil Chemical Analysis: Advanced Course. UW-Madison Libraries Parallel Press.Google Scholar
Krumm, S. (2006). SediCalc (Free Geological Software). GeoZentrum Nordbayern, Universität Erlangen-Nürnberg. http://www.geol.uni-erlangen.de/sedicalc.Google Scholar
Leaney, F. W., Osmond, C. B., Allison, G. B., & Ziegler, H. (1985). Hydrogen-isotope composition of leaf water in C3 and C4 plants: Its relationship to the hydrogen-isotope composition of dry matter. Planta, 164(2), 215220.CrossRefGoogle Scholar
Ledoux, R. L., & White, J. L. (1964). Infrared study of the OH groups in expanded kaolinite. Science, 143(3603), 244246.CrossRefGoogle ScholarPubMed
Mehra, O.P., & Jackson, M.L. (1960). Fe oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. In: Proceeding of the 7th National Conference on Clays and Clay minerals (editor: Swineford, A.. Pergamon Press, UK), pp. 317327.Google Scholar
Meier, L. P., & Menegatti, A. P. (1997). A new, efficient, one-step method for the removal of organic matter from claycontaining sediments. Clay Minerals, 32(4), 557563.CrossRefGoogle Scholar
Menegatti, A. P., Frueh-Green, G. L., & Stille, P. (1999). Removal of organic matter by disodium peroxodisulphate: Effects on mineral structure, chemical composition and physicochemical properties of some clay minerals. Clay Minerals, 34(2), 247257.CrossRefGoogle Scholar
Mikutta, R., Kleber, M., Kaiser, K., & Jahn, R. (2005). Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Science Society of America Journal, 69(1), 120135.CrossRefGoogle Scholar
Mitchell, B. D., & Farmer, V. C. (1962). Amorphous clay minerals in some Scottish soil profiles. Clay Minerals Bulletin, 5(28), 128144.CrossRefGoogle Scholar
Miura, K., Mae, K., Okutsu, H., & Mizutani, N. A. (1996). New oxidative degradation method for producing fatty acids in high yields and high selectivity from low-rank coals. Energy & Fuels, 10(6), 11961201.CrossRefGoogle Scholar
Mizota, C., & Longstaffe, F. J. (1996). Origin of Cretaceous and Oligocene kaolinites from the Iwaizumi clay deposit, Iwate, northeastern Japan. Clays and Clay Minerals, 44(3), 408416.CrossRefGoogle Scholar
Naafs, B. D. A., Rohrssen, M., Inglis, G. N., Lähteenoja, O., Feakins, S. J., Collinson, M. E., Kennedy, E. M., Singh, P. K., Singh, M. P., Lunt, D. J., & Pancost, R. D. (2018). High temperatures in the terrestrial mid-latitudes during the early Palaeogene. Nature Geoscience, 11(10), 766771.CrossRefGoogle Scholar
Oyebanjo, O., Ekosse, G. I., & Odiyo, J. (2018). Hydrogen and oxygen isotope composition of selected Cretaceous and Paleogene/Neogene kaolins from Nigeria: Paleoclimatic inferences. Applied Clay Science, 162, 375381.CrossRefGoogle Scholar
Pozo, M., & Calvo, J. P. (2018). An overview of authigenic magnesian clays. Minerals, 8(11), 520.CrossRefGoogle Scholar
Prasad, V., Farooqui, A., Tripathi, S. K. M., Garg, R., & Thakur, B. (2009). Evidence of late Palaeocene-early Eocene equatorial rain forest refugia in southern Western Ghats, India. Journal of Biosciences, 34(5), 777797.CrossRefGoogle ScholarPubMed
Pucéat, E., Joachimski, M. M., Bouilloux, A., Monna, F., Bonin, A., Motreuil, S., Morinière, P., Hénard, S., Mourin, J., Dera, G., & Quesne, D. (2010). Revised phosphate–water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth and Planetary Science Letters, 298(1–2), 135142.CrossRefGoogle Scholar
Qi, H., Coplen, T. B., Olack, G. A., & Vennemann, T. W. (2014). Caution on the use of NBS 30 biotite for hydrogen-isotope measurements with online high-temperature conversion systems. Rapid Communications in Mass Spectrometry, 28(18), 19871994.CrossRefGoogle ScholarPubMed
Samanta, A., Bera, M. K., Ghosh, R., Bera, S., Filley, T., Pande, K., Rathore, S. S., Rai, J., & Sarkar, A. (2013). Do the large carbon isotopic excursions in terrestrial organic matter across Paleocene-Eocene boundary in India indicate intensification of tropical precipitation? Palaeogeography, Palaeoclimatology, Palaeoecology, 387, 91103.CrossRefGoogle Scholar
Samanta, A., Bera, M. K., & Sarkar, A. (2016). Climate-modulated sequence development in a tropical rift basin during the Late Palaeocene to Early Eocene super greenhouse Earth. Sedimentology, 63(4), 917939.CrossRefGoogle Scholar
Sanyal, P., Sarkar, A., Bhattacharya, S. K., Kumar, R., Ghosh, S. K., & Agrawal, S. (2010). Intensification of monsoon, microclimate and asynchronous C4 appearance: Isotopic evidence from the Indian Siwalik sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(1–2), 165173.CrossRefGoogle Scholar
Schimmelmann, A., Sessions, A. L., & Mastalerz, M. (2006). Hydrogen isotopic (D/H) composition of organic matter during diagenesis and thermal maturation. Annual Review of Earth and Planetary Sciences, 34, 501533.CrossRefGoogle Scholar
Sharp, Z. D., Atudorei, V., & Durakiewicz, T. (2001). A rapid method for determination of Hydrogen and oxygen isotope ratios from water and hydrous minerals. Chemical Geology, 178(1–4), 197210.CrossRefGoogle Scholar
Sheppard, S. M. F., & Gilg, H. A. (1996). Stable isotope geochemistry of clay minerals: “The story of sloppy, sticky, lumpy and tough” Cairns-Smith (1971). Clay Minerals, 31(1), 124.CrossRefGoogle Scholar
Sperazza, M., Moore, J. N., & Hendrix, M. S. (2004). High-resolution particle size analysis of naturally occurring very fine-grained sediment through laser diffractometry. Journal of Sedimentary Research, 74(5), 736743.CrossRefGoogle Scholar
Tabor, N. J., & Montañez, I. P. (2005). Oxygen and hydrogen isotope compositions of Permian pedogenic phyllosilicates: Development of modern surface domain arrays and implications for paleotemperature reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 223(1–2), 127146.CrossRefGoogle Scholar
Tributh, H., & Lagaly, G. (1991). Identifizierung und Charakterisierung von Tonmineralen. Berichte der Deutschen Ton- und Tonmineralgruppe Giessen, Germany. Institut für Bodenkunde und Bodenerhaltung, 3785.Google Scholar
Yang, L., & Steefel, C. I. (2008). Kaolinite dissolution and precipitation kinetics at 22°C and pH 4. Geochimica et Cosmochimica Acta, 72(1), 99116.CrossRefGoogle Scholar
Supplementary material: File

Samanta et al. supplementary material
Download undefined(File)
File 2.2 MB