Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-30T00:46:49.711Z Has data issue: false hasContentIssue false

2H NMR Study of Hydrogen Bonding in Deuterated Kaolinite

Published online by Cambridge University Press:  28 February 2024

Shigenobu Hayashi
Affiliation:
National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305, Japan Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Etsuo Akiba
Affiliation:
National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305, Japan
Ritsuro Miyawaki
Affiliation:
National Industrial Research Institute of Nagoya, Kita-ku, Nagoya 462, Japan
Shinji Tomura
Affiliation:
National Industrial Research Institute of Nagoya, Kita-ku, Nagoya 462, Japan

Abstract

2H NMR spectra of synthetic deuterated kaolinite have been collected in the temperature range from 150 K to 350 K. Hydroxyl groups show a Pake doublet pattern with an asymmetry factor of 0. They are almost fixed spatially, and undergo a wobbling motion with increasing temperature. The quadrupole coupling constant is 273 ± 3 kHz at 150 K, which indicates that interlayer hydrogen bonding is relatively weak.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. M., 1983. Hydrogen atom positions in kaolinite by neutron profile refinement. Clays & Clay Miner. 31: 352356.CrossRefGoogle Scholar
Akiba, E., Hayakawa, H., Asano, H., Izumi, F., Miyawaki, R., Tomura, S., and Shibasaki, Y.. 1994 . Structure refinement of artificial deuterated kaolinite by Rietveld analysis using Time-of-Flight neutron powder diffraction data. Clays & Clay Miner.: submitted.Google Scholar
Barnes, R. G., 1974. Deuteron quadrupole coupling tensors in solids. Adv. Nucl. Quadrupole Reson. 1: 335355.Google Scholar
Bish, D. L., 1993. Rietveld refinement of the kaolinite structure at 1.5 K. Clays & Clay Miner. 41: 738744.CrossRefGoogle Scholar
Bish, D. L., and Von Dreele, R. B.. 1989 . Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clays & Clay Miner. 37: 289296.CrossRefGoogle Scholar
Butler, L. G., and Brown, T. L.. 1981 . Nuclear quadrupole coupling constants and hydrogen bonding. A molecular orbital study of oxygen-17 and deuterium field gradients in formaldehyde-water hydrogen bonding. J. Am. Chem. Soc. 103: 65416549.CrossRefGoogle Scholar
Costanzo, P. M., and Giese, R. F. Jr. 1990 . Ordered and disordered organic intercalates of 8.4-A, synthetically hydrated kaolinite. Clays & Clay Miner. 38: 160170.CrossRefGoogle Scholar
Hayashi, S., Hayamizu, K., Mashima, S., Suzuki, A., McElheny, P. J., Yamasaki, S., and Matsuda, A.. 1991 . 2D and 1H nuclear magnetic resonance study of deuterated amorphous silicon and partially deuterated hydrogenated amorphous silicon. Jpn. J. Appl. Phys. 30A: 19091914.CrossRefGoogle Scholar
Hayashi, S., Ueda, T., Hayamizu, K., and Akiba, E.. 1992a . NMR study of kaolinite. 1. 29Si, 27Al, and 1H spectra. J. Phys. Chem. 96: 1092210928.CrossRefGoogle Scholar
Hayashi, S., Ueda, T., Hayamizu, K., and Akiba, E.. 1992b . NMR study of kaolinite. 2. 1H, 27Al, and 29Si spin-lattice relaxations. J. Phys. Chem. 96: 1092810933.CrossRefGoogle Scholar
Miyawaki, R., 1994. Hydrothermal synthesis of kaolinite. J. Clay Sci. Soc. Japan 33: 202214.Google Scholar
Miyawaki, R., Tomura, S., Samejima, S., Okazaki, M., Mizuta, H., Maruyama, S., and Shibasaki, Y.. 1991 . Effects of solution chemistry on the hydrothermal synthesis of kaolinite. Clays & Clay Miner. 39: 498508.CrossRefGoogle Scholar
Olejnik, S., Aylmore, L. A. G., Posner, A. M., and Quirk, J. P.. 1968 . Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes. J. Phys. Chem. 72: 241249.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M., and Quirk, J. P.. 1970 . The intercalation of polar organic compounds into kaolinite. Clay Miner. 8: 421434.CrossRefGoogle Scholar
Sidheswaren, P., Bhat, A. N., and Ganguli, P.. 1990 . Intercalation of salts of fatty acids into kaolinite. Clays & Clay Miner. 38: 2932.CrossRefGoogle Scholar
Soda, G., and Chiba, T.. 1969 . Deuteron magnetic resonance study of cupric sulfate pentahydrate. J. Chem. Phys. 50: 439455.CrossRefGoogle Scholar
Thompson, J. G., Uwins, P. J. R., Whittaker, A. K., and Mackinnon, I. D. R.. 1992 . Structural characterization of kaolinite: NaCl intercalate and its derivatives. Clays & Clay Miner. 40: 369380.CrossRefGoogle Scholar
Tomura, S., Shibasaki, Y., Mizuta, H., and Kitamura, M.. 1983 . Spherical kaolinite: Synthesis and mineralogical properties. Clays & Clay Miner. 31: 413421.CrossRefGoogle Scholar
Tomura, S., Shibasaki, Y., Mizuta, H., and Kitamura, M.. 1985 . Growth conditions and genesis of spherical and Platy kaolinite. Clays & Clay Miner. 33: 200206.CrossRefGoogle Scholar
Yesinowski, J. P., and Eckert, H.. 1987 . Hydrogen environments in calsium phosphates. J. Am. Chem. Soc. 109: 62746282.CrossRefGoogle Scholar
Young, R. A., and Hewat, A. W.. 1988 . Verification of the triclinic crystal structure of kaolinite. Clays & Clay Miner. 36: 225232.CrossRefGoogle Scholar