Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-01T08:43:48.034Z Has data issue: false hasContentIssue false

27Al Mas NMR and Aluminum X-Ray Absorption Near Edge Structure Study of Imogolite and Allophanes

Published online by Cambridge University Press:  28 February 2024

Ph. Ildefonse
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UA CNRS 09, Universités Paris 6 et 7 and IPGP, 4 place Jussieu, 75252 Paris Cedex 05
R. J. Kirkpatrick
Affiliation:
Department of Geology, University of Illinois at Urbana-Champaign, 205 NHB, Urbana, Illinois 61801
B. Montez
Affiliation:
Department of Geology, University of Illinois at Urbana-Champaign, 205 NHB, Urbana, Illinois 61801
G. Calas
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UA CNRS 09, Universités Paris 6 et 7 and IPGP, 4 place Jussieu, 75252 Paris Cedex 05
A. M. Flank
Affiliation:
LURE, CNRS/CEA/MEN, 91405, Orsay
P. Lagarde
Affiliation:
LURE, CNRS/CEA/MEN, 91405, Orsay

Abstract

This paper compares the results of 27Al nuclear magnetic resonance spectroscopy (NMR) and Al-K-edge X-ray Absorption Near Edge Structure (XANES) of natural imogolite and allophanes and some crystalline reference minerals. All soil allophanes studied contain 4-coordinated Al (AlIV). The highest relative proportion of AlIV, 21% of the total Al, was found in Si-rich allophane. This value is close to that found in spring allophanes, which were previously considered to be different from soil allophanes. For a quantitative determination of the AlIV/Altotal ratio, NMR is more reliable than XANES, because of the sensitivity of the chemical shift to low AlIV concentrations, but XANES may be used even if paramagnetic impurities (mostly Fe) are present. Al-K XANES also yields more information than NMR on the local environment of AlVI and especially site multiplicity. AlVI XANES of imogolite and allophanes are similar regardless of the Al/Si ratio. They yield two well-resolved resonances with maxima near 1568 and 1570 eV, which indicates the presence of a unique AlVI site by comparison with crystalline references. The presence of only one AlVI site indicates that imogolite and allophanes have an octahedral sheet with a structure similar to 2/1 dioctahedral phyllosilicates but different from gibbsite or kaolinite, previously considered as structural analogues. The 27AlIV MAS NMR peak maxima of allophanes are between 58.6 and 59.8 ppm, in the range observed for crystalline and amorphous framework alumino-silicates, and less positive than those of sheet silicates, which are typically in the range 65–75 ppm. 27Al-H1 CPMAS NMR spectra suggest that both AlIV and AlVI have Al-O-H linkages.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bottero, J. Y., Axelos, M., Tchoubar, D., Cases, J., Fripiat, J. J., and Fiessinger, F., (1987) Mechanism of formation of aluminum trihydroxyde from Keggin Al13 polymers: J. Coll. Interf. Sci. 117, 4757.CrossRefGoogle Scholar
Brown, G. E., Calas, G., Waychunas, G. A., and Petiau, J., (1988) X-ray absorption spectroscopy: Applications in mineralogy and geochemistry: in Spectroscopic Methods in Mineralogy and Geology, Hawthorne, F. C., ed., Reviews in Mineralogy 18, 431512.CrossRefGoogle Scholar
Childs, C. W., Parfitt, R. L., and Newman, R. H., (1990) Structural studies of Silica Springs allophane: Clay Miner. 25, 329341.CrossRefGoogle Scholar
Cradwick, P. D. G., Farmer, V. C., Russell, J. D., Masson, C. R., Wada, K., and Yoshinaga, N., (1972) Imogolite, a hydrated aluminum silicate of tubular structure: Nature Phys. Sci. 240, 187189.CrossRefGoogle Scholar
Deng, Z., Lambert, J. F., and Fripiat, J. J., (1989) Pillaring puckered layer silicates: Chem. Mat. 1, 640650.CrossRefGoogle Scholar
Dupree, R., Lewis, M. H., and Smith, M. E., (1988) Structural characterization of ceramic phases with high resolution 27A1 NMR: J. Appl. Cryst. 21, 109116.CrossRefGoogle Scholar
Farmer, V. C., and Fraser, A. R., (1979) Synthetic imogolite, a tubular hydroxyaluminum silicate: in Proc. Intern. Clay Conf., Oxford, 1978, Mortland, M. M., and Farmer, V. C., eds., Elsevier, Amsterdam , 547553.Google Scholar
Farmer, V. C., and Russell, J. D., (1990) The structure and genesis of allophanes and imogolite; their distribution in non-volcanic soils: in Soil Colloids and Their Association in Aggregates, De Boodt, M. F., Hayes, M. H. B., and Herbillon, A., eds., Plenum Press, New York, 165178.CrossRefGoogle Scholar
Farnan, I., Kohn, S. C., and Dupree, R., (1987) A study of the structural role of water in hydrous silica glass using cross-polarization magic angle spinning NMR: Geochim. Cosmochim. Acta 51, 28692873.CrossRefGoogle Scholar
Fyfe, C. A., Gobbi, G. C., Klinowski, J., Thomas, J. M., and Ramdas, S., (1982). Resolving cristallographically distinct sites in silicalite and ZSM-5 by solid state NMR: Nature 296, 530536.CrossRefGoogle Scholar
Garcia, J., Bianconi, A., Benfatto, M., and Natoli, C. R., (1986) Coordination geometry of transition metal ions in dilute solutions by XANES: J. Phys., Colloque C8, 47, 4954.Google Scholar
Goodman, B. A., Russell, J. D., Montez, B., Oldfield, E., and Kirkpatrick, R. J., (1985) Structural studies of imogolite and allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy: Phys. Chem. Minerals 12, 342346.CrossRefGoogle Scholar
Hartmann, S. R., and Hahn, E. L., (1962) Nuclear double resonance in the rotating frame: Phys. Rev. 128, 20422053.CrossRefGoogle Scholar
Ildefonse, Ph., Calas, G., Flank, A. M., and Lagarde, P., (1992) Local aluminum environment in clay minerals by XAS. Agronomy Abstracts, 1992 Annual Meetings, Amer. Soc. Agron., Crop Sci. Soc. Amer., Soil Sci.Soc., Clay Min. Soc., p. 373.Google Scholar
Kinsey, R. A., Kirkpatrick, R. J., Hower, J., Smith, K. A., and Oldfield, E., (1985) High resolution aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals: Amer. Mineral. 70, 537548.Google Scholar
Kirkpatrick, R. J., (1988) MAS NMR spectroscopy of minerals and glasses: in Spectroscopic Methods in Mineralogy and Geology, Hawthorne, F. C., ed., Reviews in Mineralogy 18, 341403.CrossRefGoogle Scholar
Kirkpatrick, R. J., Smith, K. A., Schramm, S., Turner, G., and Yang, W. H., (1985) Solid-state nuclear magnetic resonance spectroscopy of minerals: Ann. Rev. Earth Planet. Sci. 13, 2947.CrossRefGoogle Scholar
Lengeler, B., and Eisenberger, P., (1980) Extended X-ray absorption fine structure analysis of interatomic distances, coordination numbers, and mean relative displacements in disordered alloys: Phys. Rev. B 10, 45074520.CrossRefGoogle Scholar
MacKenzie, K. J. D., (1970) Thermal decomposition of Derbyshire allophane: Clay Miner. 8, 349351.CrossRefGoogle Scholar
MacKenzie, K. J. D., Bowden, M. E., Brown, I. W. M., and Meinhold, R. H., (1989) Structure and thermal transformation of imogolite studied by 29Si and 27Al high-resolution solid-state nuclear magnetic resonance: Clays & Clay Minerals 37, 317324.CrossRefGoogle Scholar
MacKenzie, K. J. D., Bowden, M. E., and Meinhold, R. H., (1991) The structure and thermal transformations of allophanes studied by 29Si and 27Al high resolution solid-state NMR: Clays & Clay Minerals 39, 337346.CrossRefGoogle Scholar
McKeown, D. A., (1989) Aluminum X-ray absorption near edge spectra of some oxide minerals: Calculation vs. experimental data: Phys. Chem. Miner. 16, 678683.CrossRefGoogle Scholar
McKeown, D. A., Waychunas, G. A., and Brown, G. E., (1985) EXAFS study of the coordination environment of aluminum in a series of silica-rich glasses and selected minerals within the Na2O-Al2O3-SiO2 system: J. Non-Crystalline Solids 74, 349371.CrossRefGoogle Scholar
Müller, D., Gessner, W., Behrens, H. J., and Scheler, G., (1981) Determination of the aluminum coordination in aluminum-oxygen compounds by solid-state high resolution 27Al NMR: Chem. Phys. Letters 79, 5962.CrossRefGoogle Scholar
Oestrike, R., and Kirkpatrick, R. J., (1988) 27Al and 29Si MASS NMR spectroscopy of glasses in the system anorthite-diopside-forsterite: Amer. Mineral. 73, 534546.Google Scholar
Oestrike, R., Yang, W. H., Kirkpatrick, R. J., Hervig, R. L., Navrotsky, A., and Montez, B., (1987) High-resolution 23NA, 27Al, and 29Si NMR spectroscopy of framework aluminosilicate glasses: Geochim. Cosmoch. Acta 51, 21992209.CrossRefGoogle Scholar
Oldfield, E., Kinsey, R. A., Smith, K. A., Nichols, J. A., and Kirkpatrick, R. J., (1983) High resolution NMR of inorganic solids. Influence of magnetic centres on magic angle sample-spinning lineshapes in some natural aluminosilicates: J. Magn. Reson. 51, 325329.Google Scholar
Parfitt, R. L., (1990) Allophane in New Zealand—A review: Austr. J. Soil Res. 28, 343360.CrossRefGoogle Scholar
Parfitt, R. L., and Henmi, T., (1980) Structure of some allophanes from New-Zealand: Clays & Clay Minerals 28, 285294.CrossRefGoogle Scholar
Parfitt, R. J., and Kimble, J. M., (1990) Conditions of formation of allophane in soils: Soil Sci. Soc. Am. J. 53, 971977.CrossRefGoogle Scholar
Petiau, J., Calas, G., and Sainctavit, P., (1987) Recent developments in the experimental studies of XANES: J. Phys. C9 48, 10851096.Google Scholar
Plee, D., Borg, F., Gatineau, L., and Fripiat, J. J., (1985) High-resolution solid-state 27Al and 29Si nuclear magnetic resonance study of pillared clays: J. Am. Chem. Soc. 107, 23622369.CrossRefGoogle Scholar
Risbud, S. H., Kirkpatrick, R. J., Taglialavore, A. P., and Montez, B., (1987) Solid-state NMR evidence of 4-, 5-, and 6-fold aluminum sites in roller-quenched SiO2-Al2O3 glasses: J. Amer. Ceram. Soc. 70, 1012.CrossRefGoogle Scholar
Saalfeld, H., and Wedde, M., (1974) Refinement of the crystal structure of gibbsite, Al(OH)3: Z. für Kristallog. 139: 129135.CrossRefGoogle Scholar
Sanz, J., and Serratoza, J. M., (1984) Distinction of tetrahedrally and octahedrally coordinated Al in phyllosilicates by NMR spectroscopy: Clay Miner. 19, 113115.CrossRefGoogle Scholar
Taylor, M., and Brown, G. E. Jr 1979() Structure of mineral glasses: I. The feldspar glasses NaAl Si3Oi, KAl Si3O8, CaAlSi2O8: Geochim. Cosmochim. Acta 43, 6175.CrossRefGoogle Scholar
Theng, B. K. G., Russell, M., Churchman, G. J., and Parfitt, R. L., (1982) Surface properties of allophane, halloysite, and imogolite: Clays & Clay Minerals 30, 143149.CrossRefGoogle Scholar
Van der Gaast, S. J., Wada, K., Wada, S. I., and Kakuto, Y., (1985) Small-angle X-ray powder diffraction, morphology, and structure of allophane and imogolite: Clays & Clay Minerals, 33, 237243.CrossRefGoogle Scholar
Wada, K., (1977) Allophane and imogolite: in Minerals in Solid Environments, Dixon, J. B., and Weeds, S. B., eds., Soil Science Society America, Madison, Wisconsin, 603638.Google Scholar
Wada, K., (1979) Structural formulas of allophanes: in Proc. Intern. Clay Conf., 1978. Oxford, Mortland, M. M., and Farmer, V. C., eds., Developments in Sedimentology 27, Elsevier, Amsterdam , 537545.Google Scholar
Wada, S. I., and Wada, K., (1977) Density and structure of allophane: Clay Miner. 12, 289298.CrossRefGoogle Scholar
Webb, J. A., and Finlayson, B. L., (1987) Incorporation of Al, Mg, and water in opal A: Evidence from speleotherms: Amer. Mineral. 72, 1240–1210.Google Scholar
Wilson, M. A., Barron, P. F., and Campbell, A. S., (1984) Detection of aluminum coordination in soils and clay fraction using 27Al magic angle spinning NMR: J. Soil Sci. 35, 201207.CrossRefGoogle Scholar
Woessner, D. E., (1989) Characterization of clay minerals by 27Al nuclear resonance spectroscopy: Amer. Mineral. 74, 203215.Google Scholar
Yang, W. H., and Kirkpatrick, R. J., (1989) Hydrothermal reaction of albite and a sodium aluminosilicate glass: A solid-state NMR study: Geochim. Cosmochim. Acta 53, 805819.Google Scholar
Yoshinaga, N., and Aomine, S., (1962) Allophane in some Ando soils: Soil Sc. Plant. Nutr. 8, 613.CrossRefGoogle Scholar
Young, A. W., Campbell, A. S., and Walker, T. W., (1980) Allophane isolated from a podzol developed on a non-vitric parent material: Nature 284, 4648.CrossRefGoogle Scholar