Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T17:13:40.189Z Has data issue: false hasContentIssue false

Advances in X-Ray Diffractometry of Clay Minerals

Published online by Cambridge University Press:  01 January 2024

William Parrish*
Affiliation:
Philips Laboratories, Irvington-on-Hudson, New York, USA

Abstract

The introduction of counter tubes and the related instrument geometries have made it possible to obtain greatly improved x-ray powder patterns. Most of the important factors that must be understood in x-ray diffractometry are described in terms of their effect on the intensity, peak-to-background ratio, resolution and line shape. These factors are the geometry of the x-ray optical system, the x-ray tube focal spot size, the angular apertures of the primary beam in the focusing and axial planes, the 2 : 1 setting, and the receiving slit. The precision is often limited by the specimen preparation rather than the instrument, and the effects of homogeneity, displacement and transparency, crystallite sizes, and preferred orientation are outlined. A new diffractometer arrangement employing a transmission specimen followed by a focusing crystal monochromator is shown to be a useful supplement to the standard reflecting specimen diffractometer for clay mineral studies. The important characteristics of Geiger, proportional and scintillation counters are described in terms of linearity, quantum counting efficiency, pulse amplitude distribution and counting statistics. A bibliography of key literature references is appended.

Type
Article
Copyright
Copyright © Clay Minerals Society 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, L., Klug, H. P. and Kummer, E. (1948) Statistical factors affecting the intensity of x-rays diffracted by crystalline powders: J. Appl. Phys., v. 19, pp. 742753.CrossRefGoogle Scholar
Brindley, G. W. (Editor) (1951) X-Ray Identification and Crystal Structures of Clay Minerals: Mineralogical Society, London, 345 pp.Google Scholar
Buerger, M. J. and Kennedy, G. C. (1958) An improved specimen holder for the focusing- type x-ray spectrometer: Amer. Min., v. 43, pp. 756757.Google Scholar
Cummings, W. V. Jr., Kaulitz, D. C. and Sanderson, M. J. (1955) Double diffracting x-ray spectrometer for study of irradiated materials: Rev. Sci. Instr., v. 26, pp. 513.CrossRefGoogle Scholar
Curtiss, L. F. (1950) The Geiger-Müller counter: Nat. Bur. Stand. Circ. 490.Google Scholar
deWolff, P. M. (1948) An adjustable curved crystal monochromator for x-ray diffraction analysis: Appl. Sci. Res., B, v. 1, pp. 119126; Multiple Guinier cameras: Acta Cryst., v. 1, pp. 207-211.CrossRefGoogle Scholar
de Wolff, P. M. (1957) Self-centering combined aperture- and scatter-slit for powder diffractometry with constant effective specimen area: Appl. Sci. Res., B, v. 6, pp. 296300.CrossRefGoogle Scholar
de Wolff, P. M., Lowitzsch, K. and Parrish, W. (1956) Application of focusing monochromators to x-ray diffractometry: Int. Union of Cryst., Madrid. In preparation.Google Scholar
de Wolff, P. M., Taylor, J. M. and Parrish, W. (1959) Experimental study of effect of crystallite size statistics on x-ray diffractometer intensities: J. Appl. Phys., v. 30, pp. 6369.CrossRefGoogle Scholar
Dowling, P. H., Hendee, C. F., Kohler, T. R. and Parrish, W. (1956-1957) Counter tubes for x-ray analysis: Philips Tech. Rev., v. 18, pp. 262275.Google Scholar
du Pré, F. K. (1953) The counting loss of a Geiger counter with periodic arrival rate of quanta: Philips Res. Rpts., v. 8, pp. 411418.Google Scholar
Flörke, O. W. and Saalfeld, H. (1955) Ein Verfahren zur Herstellung texturfreier Röntgen-Pulverpräparate: Z. Krist., v. 106, pp. 460466.Google Scholar
Friedman, H. (1945) Geiger counter spectrometer for industrial research: Electronics, v. 18, pp. 132137.Google Scholar
Friedman, H. (1949) Geiger counter tubes: Proc. Inst. Radio Engrs., N.Y., v. 37, pp. 791808.Google Scholar
Hamacher, E. A. and Lowitzsch, K. (1955-56) The “Norelco” counting rate computer: Philips Tech. Rev., v. 17, pp. 249254.Google Scholar
Keating, D. T. and Warren, B. E. (1952) The effect of low absorption coefficient on x- ray spectrometer measurements: Rev. Sci. Instr., v. 23, pp. 519522.CrossRefGoogle Scholar
Kerr, P. F. et al. (1950) Analytical data on reference clay materials: Amer. Pet. Inst. Project 49, Prelim. Rept. No. 7.Google Scholar
Kohler, T. R. and Parrish, W. (1955) x-Ray diffractometry of radioactive samples: Rev. Sci. Instr., v. 26, pp. 374379.CrossRefGoogle Scholar
Ladell, J., Parrish, W. and Taylor, J. (1959) Center-of-gravity method of precision lattice parameter determination: Acta Cryst., v. 12, pp. 253254; Interpretation of diffractometer line profiles: Ibid, in press.CrossRefGoogle Scholar
Lang, A. R. (1956) Diffracted-beam monochromatization techniques in x-ray diffractometry: Rev. Sci. Instr., v. 27, pp. 1725.CrossRefGoogle Scholar
Leineweber, G. and Heller, E. (1957) Zur Intensitätsmessung von Röntgeninterferenzen. II. Zählrohrgoniometermessungen an Pulverpräparaten mit Hilfe von kristallreflektierter monochromatisher Strahlung: Z. Krist., v. 109, pp. 198203.CrossRefGoogle Scholar
Lindemann, R. and Trost, A. (1940) Das Interferenz-Zählrohr als Hilfsmittel der Feinstrukturforschung mit Röntgenstrahlen: Z. Phys., v. 115, pp. 456468.CrossRefGoogle Scholar
Mack, M. (1956) Bibliography of x-ray spectrochemical analysis: fluorescence and absorption: Norelco Reptr., v. 3, pp. 3739.Google Scholar
Mack, M. and Spielberg, N. (1958) Statistical factors in x-ray intensity measurements: Spectrochim. Acta, v. 12, pp. 169178.CrossRefGoogle Scholar
McCreery, G. L. (1949) Improved mount for powdered specimens used on the Geiger - counter x-ray spectrometer: J. Amer. Geram. Soc., v. 32, pp. 141146.Google Scholar
Milberg, M. E. (1958) Transparency factor for weakly absorbing samples in x-ray diffractometry: J. Appl. Phys., v. 29, pp. 6465.CrossRefGoogle Scholar
Parrish, W. (1949) x-Ray powder diffraction analysis: film and Geiger counter techniques: Science, v. 110, pp. 368371.Google ScholarPubMed
Parrish, W. (1955-1956a) x-Ray intensity measurements with counter tubes: Philips Tech. Rev., v. 17, pp. 206221.Google Scholar
Parrish, W. (1955-1956b) x-Ray spectrochemical analysis: Philips Tech. Rev., v. 17, pp. 269286.Google Scholar
Parrish, W. (1958) Optimum x-ray tube focal spot geometry for powder diffractometry: Am. Cryst. Assoc., Milwaukee Meeting, Paper G-8, p. 35.Google Scholar
Parrish, W. (1959) Geiger, proportional and scintillation counters: Int. Tables for X-ray Cryst., v. 3. In press.Google Scholar
Parrish, W. and Hamacher, E. A. (1952) Geiger counter x-ray spectrometer; instrumentation and techniques: Trans. Instr. and, Meas. Conf., Stockholm, pp. 95105.Google Scholar
Parrish, W., Hamacher, E. A. and Lowitzsch, K. (1954-1955) The “ Norelco “ x-ray diffractometer: Philips Tech. Rev., v. 16, pp. 123133.Google Scholar
Parrish, W. and Kohler, T. R. (1956a) The use of counter-tubes in x-ray analysis: Rev. Sci. Instr., v. 27, pp. 795808.CrossRefGoogle Scholar
Parrish, W. and Kohler, T. R. (1956b) A comparison of x-ray wavelengths for powder diffractometry: J. Appl. Phys., v. 27, pp. 12151218.CrossRefGoogle Scholar
Parrish, W. and Lowitzsch, K. (1959) Geometry, alignment and angular calibration of x-ray diffractometers: Amer. Min., v, pp. 765787.Google Scholar
Parrish, W. and Taylor, J. (1956) Beta filters for x-ray diffractometry: Norelco Reptr., v. 3, pp. 105106.Google Scholar
Parrish, W. and Wilson, A. J. C. (1959) Precision measurement of lattice parameters of polycrystalline specimens: Int. Tables for X-ray Cryst., v. 2, pp. 216234.Google Scholar
Pike, E. R. (1957) Counter diffractometer—the effect of vertical divergence on the displacement and breadth of powder diffraction lines: J. Sci. Instr., v. 34, pp. 355363; (1959) Ibid., v. 36, pp. 52-53.Google Scholar
Pike, E. R. and Wilson, A. J. C. (1959) Counter diffractometer—the theory of the use of centroide of diffraction profiles for high accuracy in the measurement of diffraction angles: Brit. J. Appl. Phys., v. 10, pp. 5771.CrossRefGoogle Scholar
Porrenga, D. H. (1958) The application of a multiple Guinier camera (after P. M. de Wolff) in clay mineral studies: Amer. Min., v. 43, pp. 770774.Google Scholar
Smallman, C. R. (1952) A sample holder for the Norelco high angle goniometer: Rev. Sci. Instr., v. 23, pp. 135136.CrossRefGoogle Scholar
Taylor, J. and Parrish, W. (1955) Absorption and counting efficiency data for x-ray detectors: Rev. Sci. Instr., v. 26, pp. 367373; Ibid., v. 27, p. 108.CrossRefGoogle Scholar
Tournarie, M. (1954) Correction de l'erreur systématique due à l'enregistrement continu au spectromètre à rayon x: J. Phys. Radium, Suppl. no. 1, v. 15, pp. 16A22A.Google Scholar
Triplett, W. B., Hauser, J. J., Wells, C. and Mehl, R. F. (1954) Determination of retained austenite by a Geiger counter x-ray technique: Wright Air Development Center Tech. Rpt. 53-518.Google Scholar
Van Zoonen, D. (1955) The efficiency of halogen-quenched Geiger-counters for x-rays: Appl. Sci. Res., v. 4, pp. 196204.Google Scholar
Warren, B. E. (1959) x-Ray studies of deformed metals: Progress in Metal Physics, v. 8, Pergamon Press Ltd., London.Google Scholar
Wilson, A. J. C. (1949) X-Ray Optics: Methuen, London.Google Scholar
Wilson, A. J. C. (1950) Geiger counter x-ray spectrometer—influence of size and absorption coefficient of specimen on position and shape of powder diffraction maxima: J. Sci. Instr., v. 27, pp. 321325.CrossRefGoogle Scholar