Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T02:01:29.463Z Has data issue: false hasContentIssue false

Visualization of clay minerals at the atomic scale

Published online by Cambridge University Press:  07 September 2020

Toshihiro Kogure*
Affiliation:
Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan

Abstract

This review demonstrates that high-resolution transmission electron microscopy (HRTEM) imaging of clay minerals or phyllosilicates with an incident electron beam along the major zone axes parallel to the constituting layers, in which the contrast corresponds to individual cation columns in the images obtained, is indispensable for elucidating the enigmatic structures of these minerals. Several kinds of variables for layer stacking, including polytypes, stacking disorder and the interstratification of various kinds of unit layers or interlayer materials, are common in phyllosilicates. Local and rigorous determination of such variables is possible only with HRTEM, although examination as to whether the results obtained by the HRTEM images from limited areas represent the whole specimen should be made using other techniques, such as X-ray diffraction. Analysis of these stacking features in clay minerals provides valuable insights into their origin and/or formation processes. Recent state-of-the-art techniques in electron microscopy, including incoherent imaging, superior resolutions of ~0.1 nm and low-dose imaging using new recording media, will also contribute significantly to our understanding of the true structures of clay minerals.

Type
Review Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is based on the 2019 George Brown Lecture given by T. Kogure.

Associate Editor: Steve Hillier

References

Amouric, M. & Olives, J. (1998) Transformation mechanisms and interstratification in conversion of smectite to kaolinite: an HRTEM study. Clays and Clay Minerals, 46, 521527.CrossRefGoogle Scholar
Backhaus, K.O. & Ďurovič, S. (1984) Polytypism of micas. I. MDO polytypes and their derivation. Clays and Clay Minerals, 32, 453463.CrossRefGoogle Scholar
Bailey, S.W. (1963) Polytypism of the kaolin minerals. American Mineralogist, 48, 11961209.Google Scholar
Bailey, S.W. (1984) Classification and structure of the micas. Pp. 112 in: Micas (S.W. Bailey, editor). Reviews in Mineralogy, Vol. 13. Mineralogical Society of America, Washington, DC, USA.Google Scholar
Banfield, J.F. & Bailey, S.W. (1996) Formation of regularly interstratified serpentine-chlorite minerals by tetrahedral inversion in long-period serpentine polytypes. American Mineralogist, 81, 7991.CrossRefGoogle Scholar
Banfield, J.F. & Murakami, T. (1998) Atomic-resolution transmission electron microscope evidence for the mechanism by which chlorite weathers to 1:1 semi-regular chlorite-vermiculite. American Mineralogist, 83, 348357.CrossRefGoogle Scholar
Baronnet, A. (1992) Polytypism and stacking disorder. Pp. 231288 in: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (Buseck, P.R., editor). Reviews in Mineralogy, Vol. 27. Mineralogical Society of America, Washington, DC, USA.CrossRefGoogle Scholar
Beaufort, D., Cassagnabere, A., Petit, S., Lanson, B., Berger, G., Lacharpagne, J.C. & Johansen, H. (1998) Kaolinite-to-dickite reaction in sandstone reservoirs. Clay Minerals, 33, 297316.CrossRefGoogle Scholar
Bell, D.C., Mankin, M., Day, R.W. & Erdman, N. (2014) Successful application of low voltage electron microscopy to practical materials problems. Ultramicroscopy, 145, 5665.CrossRefGoogle ScholarPubMed
Bell, D.C., Russo, C.J. & Kolmykov, D.V. (2012) 40keV atomic resolution TEM. Ultramicroscopy, 114, 3137.CrossRefGoogle Scholar
Bookin, A.S., Drits, V.A., Plançon, A. & Tchoubar, C. (1989) Stacking faults in kaolin-group minerals in the light of real structural features. Clays & Clay Minerals, 37, 297307.CrossRefGoogle Scholar
Brindley, G.W. & Robinson, K. (1946) Randomness in the structures of kaolinitic clay minerals. Transactions of the Faraday Society, 42B, 198205.CrossRefGoogle Scholar
Brindley, G.W. & Wardle, R. (1970) Monoclinic and triclinic forms of pyrophyllite and pyrophyllite anhydride. American Mineralogist, 55, 12591272.Google Scholar
Chukhrov, F.V. & Zvyagin, B.B. (1966) Halloysite, a crystallochemically and mineralogically distinct species. Pp. 1125 in: Proceedings of the International Clay Conference 1966 (Heller, L. & Weiss, A., editors). Jerusalem, Israel.Google Scholar
Eggleton, R.A. & Banfield, J.F. (1985) The alteration of granitic biotite to chlorite. American Mineralogist, 70, 902910.Google Scholar
Fujiyoshi, Y., Mizusaki, T., Morikawa, K., Yamagishi, H., Aoki, Y., Kihara, H. & Harada, Y. (1991) Development of a superfluid helium stage for high-resolution electron microscopy. Ultramicroscopy, 38, 241251.CrossRefGoogle Scholar
Giese, R.F.J. (1988) Kaolin minerals: structures and stabilities. Pp. 2966 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, Vol. 19. Mineralogical Society of America, Washington, DC, USA.CrossRefGoogle Scholar
Gilbert, B., Comolli, L.R., Tinnacher, R.M., Kunz, M. & Banfield, J.F. (2015) Formation and restacking of disordered smectite osmotic hydrates. Clays and Clay Minerals, 63, 432442.CrossRefGoogle Scholar
Haider, M., Rose, H., Uhlemann, S., Kabius, B. & Urban, K. (1998) Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. Journal of Electron Microscopy, 47, 395405.CrossRefGoogle Scholar
Hayashida, M., Nomaguchi, T., Kimura, Y. & Takai, Y. (2007) Development of computer-assisted minimal-dose system with beam blanker for TEM. Micron, 38, 505512.CrossRefGoogle ScholarPubMed
Honjo, G. & Mihara, K. (1954) A study of clay minerals by electron-diffraction diagrams due to individual crystallites. Acta Crystallographica, 7, 511513.CrossRefGoogle Scholar
Ichinose, H., Sawada, H., Takuma, E. & Osaki, M. (1999) Atomic resolution HVEM and environmental noise. Journal of Electron Microscopy, 48, 887891.CrossRefGoogle Scholar
Iijima, S. & Buseck, P.R. (1978) Experimental study of disordered mica structure by high-resolution electron microscopy. Acta Crystallographica Section A: Foundations of Crystallography, 34, 709719.CrossRefGoogle Scholar
Inoué, S. & Kogure, T. (2016a) High-angle annular dark field scanning transmission electron microscopic (HAADF-STEM) study of Fe-rich 7 Å–14 Å interstratified minerals from a hydrothermal deposit. Clay Minerals, 51, 603613.CrossRefGoogle Scholar
Inoué, S. & Kogure, T. (2016b) High-resolution transmission electron microscopy (HRTEM) study of stacking irregularity in Fe-rich chlorite from selected hydrothermal ore deposits. Clays and Clay Minerals, 64, 131144.CrossRefGoogle Scholar
Kameda, J., Miyawaki, R., Drits, V.A. & Kogure, T. (2007a) Polytype and morphological analyses of gümbelite a fibrous Mg-rich illite. Clays and Clay Minerals, 55, 453466.CrossRefGoogle Scholar
Kameda, J., Miyawaki, R., Kitagawa, R. & Kogure, T. (2007b) XRD and HRTEM analyses of stacking structures in sudoite, di-trioctahedral chlorite. American Mineralogist, 92, 15861592.CrossRefGoogle Scholar
Kameda, J., Saruwatari, K., Beaufort, D. & Kogure, T. (2008) Textures and polytypes in vermiform kaolins diagenetically formed in a sandstone reservoir: a FIB-TEM investigation. European Journal of Mineralogy, 20, 199204.CrossRefGoogle Scholar
Kikuchi, R., Mukai, H., Kuramata, C. & Kogure, T. (2015) Cs-sorption in weathered biotite from Fukushima granitic soil. Journal of Mineralogical and Petrological Sciences, 110, 126134.CrossRefGoogle Scholar
Kogure, T. (2002) Investigations of micas using advanced transmission electron microscopy. Pp. 280312 in: Micas: Crystal Chemistry & Metamorphic Petrology (Mottana, A., Sassi, F.P., Thompson, J.B.J. & Guggenheim, S., editors). Reviews in Mineralogy and Geochemistry, Vol. 46. Mineralogical Society of America, Washington, DC, USA.Google Scholar
Kogure, T. (2007) Imaging of dioctahedral 2:1 layers by high-resolution transmission electron microscopy (HRTEM): possibility of recording the dehydroxylate. American Mineralogist, 92, 13681373.CrossRefGoogle Scholar
Kogure, T. & Banfield, J. (1998) Direct identification of the six polytypes of chlorite characterized by semi-random stacking. American Mineralogist, 83, 925930.CrossRefGoogle Scholar
Kogure, T. & Banfield, J.F. (2000) New insights into the mechanism for chloritization of biotite using polytype analysis. American Mineralogist, 85, 12021208.CrossRefGoogle Scholar
Kogure, T. & Drits, V.A. (2010) Structural change in celadonite and cis-vacant illite by electron radiation in TEM. Clays and Clay Minerals, 58, 522531.CrossRefGoogle Scholar
Kogure, T. & Inoue, A. (2005a) Determination of defect structures in kaolin minerals by high-resolution transmission electron microscopy (HRTEM). American Mineralogist, 90, 8589.CrossRefGoogle Scholar
Kogure, T. & Inoue, A. (2005b) Stacking defects and long-period polytypes in kaolin minerals from a hydrothermal deposit. European Journal of Mineralogy, 17, 465474.CrossRefGoogle Scholar
Kogure, T. & Murakami, T. (1996) Direct identification of biotite/vermiculite layers in hydrobiotite using high-resolution TEM. Mineralogical Journal, 18, 131137.CrossRefGoogle Scholar
Kogure, T. & Murakami, T. (1998) Structure and formation mechanism of low-angle grain boundaries in chlorite. American Mineralogist, 83, 358364.CrossRefGoogle Scholar
Kogure, T. & Nespolo, M. (1999a) A TEM study of long-period mica polytypes: determination of the stacking sequence of oxybiotite by means of atomic resolution images and periodic intensity distribution (PID). Acta Crystallographica Section B: Structural Science, 55, 507516.CrossRefGoogle Scholar
Kogure, T. & Nespolo, M. (1999b) First occurence of a stacking sequence with (±60°, 180°) rotation in Mg-rich annite. Clays and Clay Minerals, 47, 784792.CrossRefGoogle Scholar
Kogure, T. & Okunishi, E. (2010) C s-corrected HAADF-STEM imaging of silicate minerals. Journal of Electron Microscopy, 59, 263271.CrossRefGoogle ScholarPubMed
Kogure, T., Banno, Y. & Miyawaki, R. (2004) Interlayer structure in aspidolite, the Na analogue of phlogopite. European Journal of Mineralogy, 16, 891897.CrossRefGoogle Scholar
Kogure, T., Drits, V.A. & Inoue, S. (2013a) Structure of mixed-layer corrensite-chlorite revealed by high-resolution transmission electron microcopy (HRTEM). American Mineralogist, 98, 12531260.CrossRefGoogle Scholar
Kogure, T., Eilers, P.H.C. & Ishizuka, K. (2008a) Application of optimum HRTEM noise filters in mineralogy and related sciences. Microscopy and Analysis, 22, S11S14.Google Scholar
Kogure, T., Elzea-Kogel, J., Johnston, C.T. & Bish, D.L. (2010) Stacking disorder in a sedimentary kaolinite. Clays and Clay Minerals, 58, 6271.CrossRefGoogle Scholar
Kogure, T., Ishii, T., Kikuchi, R., Miyuwaki, R. & Yuguchi, T. (2017) Two types of chlorite transformed from biotite by hydrothermal alteration of granite. Presented at: 16th International Clay Conference, 17–21 July, Granada, Spain.Google Scholar
Kogure, T., Jige, M., Kameda, J., Yamagishi, A., Miyawaki, R. & Kitagawa, R. (2006a) Stacking structures in pyrophyllite revealed by high-resolution transmission electron microscopy (HRTEM). American Mineralogist, 91, 12931299.CrossRefGoogle Scholar
Kogure, T., Kameda, J. & Drits, V.A. (2008b) Stacking faults with 180° layer rotation in celadonite, an Fe- and Mg-rich dioctahedral mica. Clays and Clay Minerals, 56, 612621.CrossRefGoogle Scholar
Kogure, T., Kameda, J., Matsui, T. & Miyawaki, R. (2006b) Stacking structure in disordered talc: interpretation of its X-ray diffraction pattern by using pattern simulation and high-resolution transmission electron microscopy. American Mineralogist, 91, 13631370.CrossRefGoogle Scholar
Kogure, T., Miyawaki, R. & Banno, Y. (2005) The true structure of wonesite, an interlayer-deficient trioctahedral sodium mica. American Mineralogist, 90, 725731.CrossRefGoogle Scholar
Kogure, T., Mori, K., Drits, V.A. & Takai, Y. (2013b) Structure of prismatic halloysite. American Mineralogist, 98, 10081016.CrossRefGoogle Scholar
Kogure, T., Mori, K., Kimura, Y. & Takai, Y. (2011) Unraveling the stacking structure in tubular halloysite using a new TEM with computer-assisted minimal-dose system. American Mineralogist, 96, 17761780.CrossRefGoogle Scholar
McMullan, G., Faruqi, A.R., Clare, D. & Henderson, R. (2014) Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy, 147, 156163.CrossRefGoogle ScholarPubMed
Menter, J.W. (1956) The direct study by electron microscopy of crystal lattices and their imperfections. Philosophical Magazine, 86, 45294552.CrossRefGoogle Scholar
Murray, H.H. (1954) Structural variations of some kaolinites in relation to dehydrate halloysite. American Mineralogist, 39, 97108.Google Scholar
Okumura, T., Tamura, K., Fujii, E., Yamada, H. & Kogure, T. (2014) Direct observation of cesium at the interlayer region in phlogopite mica. Microscopy, 63, 6572.CrossRefGoogle ScholarPubMed
Peacor, D.R. (1992) Diagenesis and low-grade metamorphism of shales and slates. Pp. 335380 in: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (Buseck, P.R., editor). Reviews in Mineralogy, Vol. 27. Mineralogical Society of America, Washington, DC, USA.CrossRefGoogle Scholar
Plançon, A. & Tchoubar, C. (1977) Determination of structural defects in phyllosilicates by X-ray powder diffraction – II. Nature and proportion of defects in natural kaolinites. Clays and Clay Minerals, 25, 436450.CrossRefGoogle Scholar
Spence, J.C. (1981) Experimental High-Resolution Electron Microscopy. Oxford University Press, Oxford, UK, 370 pp.CrossRefGoogle Scholar
Terasaki, O., Ohsuna, T., Alfredson, V., Bovin, J.-O., Watanabe, D. & Tsuno, K. (1991) The study of zeolites by HVHREM. Ultramicroscopy, 39, 238246.CrossRefGoogle Scholar
Tomura, S., Kitamura, M. & Sunagawa, I. (1978) High resolution electron microscopy of dioctahedral mica. Mineralogical Journal, 9, 129136.CrossRefGoogle Scholar
Veblen, D.R. & Ferry, J.M. (1983) A TEM study of the biotite-chlorite reaction and comparison with petrologic observations. American Mineralogist, 68, 11601168.Google Scholar
Yanaka, T., Moriyama, K. & Buchanan, R. (1989) A new ultra-high resolution TEM, EM-002B, with a unique UHR objective lens configuration. Proceedings of MRS Symposium, 139, 271276.CrossRefGoogle Scholar
Zvyagin, B.B. (1962) Polytypism of double-layer minerals of the kaolinite type. Kristallografiya, 7, 5165.Google Scholar