Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-10T17:56:07.789Z Has data issue: false hasContentIssue false

Swelling minerals in a basalt and its weathering products from Morvern, Scotland: I. Interstratified montmorillonite-vermiculite-illite

Published online by Cambridge University Press:  09 July 2018

D. C. Bain
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen AB9 2 QJ
J. D. Russell
Affiliation:
The Macaulay Institute for Soil Research, Craigiebuckler, Aberdeen AB9 2 QJ

Abstract

The main clay mineral in weathered basaltic rubble has been shown by X-ray diffraction, chemical, infrared and differential thermal methods to be an interstratification of montmorillonite, vermiculite and illite in the approximate ratio 2:1:1, the montmorillonite having some degree of segregation and the vermiculite and illite being randomly interstratified. All three components are dioctahedral, the swelling ones having a high tetrahedral charge, a large aluminium content, and very little iron. Despite the 50% montmorillonite content of the mineral, its infrared absorption pattern is generally illitic in character.

Résumé

Résumé

Le minéral argileux principal d'un basalte détritique altéré a été identifié par diffraction des rayons X, analyse chimique, spectroscopie infrarouge et analyse thermique différentielle; il s'agit d'un interstratifié montmorillonite, vermiculite et illite, dans le rapport approximatif 2: 1 : 1, la montmorillonite possède un certain degré de ségrégation et vermiculite et illite présentent une interstratification gouvernée par le hasard. Tousle trois composants sont dioctaédriques, celui qui gonfle possède une charge tétrahédrique elevée, un fort contenu en aluminium et très peu de fer. Malgré une teneur de 50% de montmorillonite, le minéral présente le spectre d'absorbtion infra-rouge voisin de celui d'une illite.

Kurzreferat

Kurzreferat

Das Hauptmineral in verwittertem basaltischen Grus wurde mittels Röntgendiffraktometrie, chemischer Methoden und Infrarot und Differential Thermoanalysen als ein Gemisch von Montmorillonit, Vermiculit und Illit im umgefähren Verhältnis von 2: 1 : 1 identifiziert. Der Montmorillonit zeigt einige Anzeichen von Segregation, während Vermiculit und Illit in willkürlicher Wechsellagerung vorliegen.

Alle drei Komponenten sind dioktaedrisch. Die quellfähigen Tone haben eine hohe tetraedrische Ladung, einen hohen Aluminiumgehalt und sehr wenig Eisen. Trotz des 50%igen Montmorillonitanteils in dem Wechsellagerungsmineral hat das Infrarotabsorptionsspektrum einen illitischen Charakter.

Resumen

Resumen

El mineral principal de arcilla en escombros basálticos meteorizados se ha demostrado por métodos de difracción de rayos X, químicos, infrarrojos y térmicos diferenciales, que es una interestratificación de montmorillonita, vermiculita e ilita en la proporción aproximada 2:1:1, en la que la montmorillonita tiene cierto grado de segregación y la vermiculita y la ilita aparecen interestratificadas aleatoriamente. Estos tres minerales constituyentes son dioctaédricos, y los que se hinchan tienen una carga tetraédrica, un gran contenido de aluminio y muy poco hierro. A pesar del contenido de 50% montmorillonita del mineral, su forma de absorción infrarroja es de carácter ilítico.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bain, D.C. & Russell, J.D. (1981) Swelling minerals in a basalt and its weathering products from Morvern, Scotland: II. Swelling chlorite. Clay Miner. 16 (in press).Google Scholar
Bain, DC, Ritchie, P.F.S., Clark, D.R. & Duthie, D.M.L. (1980) Geochemistry and mineralogy of weathered basalt from Morvern, Scotland. Miner. Mag. 43, 865872.Google Scholar
Cradwick, P.D. & Wilson, M.J. (1978) Calculated X-ray diffraction curves for the interpretation of a three-component interstratified system. Clay Miner. 13, 5365.Google Scholar
Dixon, J.B. & Weed, S.B. (1977) Minerals in Soil Environments, pp. 242, 312. Soil Sci. Soc. Am., Wisconsin.Google Scholar
Foscolos, A.E. & Kodama, H (1974) Diagenesis of clay minerals from Lower Cretaceous shales of north eastern British Columbia. Clays Clay Miner. 22, 319335.Google Scholar
Kodama, H & Brydon, J.E. (1968) A study of clay minerals in podzol soils in New Brunswick, eastern Canada. Clay Miner. 7, 295309.Google Scholar
Kodama, H & Ross, G.J. (1972) Structural changes accompanying potassium exchange in a clay-size muscovite. Proc. Int. Clay Conf., Madrid, II, 159171.Google Scholar
Mackenzie, R.C. (1951) A micromethod for Determination of cation-exchange capacity of clay. J. Colloid Sci. 6, 219222.Google Scholar
Mitchell, B.D. & Mackenzie, R.C. (1959) An apparatus for differential thermal analysis unDer controlledatmosphere conditions. Clay Miner. Bull. 4, 3143.CrossRefGoogle Scholar
Norrish, K & Hutton, J.T. (1969) An accurate X-ray spectrographic method for the analysis of a wiDe range of geological samples. Geochim. cosmochim. Acta, 33, 431153.Google Scholar
Reynolds, R.C. & Hower, J (1970) The nature of interlayering in mixed-layer illite-montmorillonites. Clays Clay Miner. 18, 2536.Google Scholar
Ross, G.J. & Mortland, M.M. (1966) A soil beiDellite. Soil Sci. Soc. Am. Proc. 30, 337343.CrossRefGoogle Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals, pp. 5-23. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar