Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T09:16:38.028Z Has data issue: false hasContentIssue false

Structural collapse of Al13- intercalated montmorillonite by Na- salicylate solutions

Published online by Cambridge University Press:  09 July 2018

E. Molis
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS-INPL BP 40, F-54501 Vandú uvre-les-Nancy Cedex
F. Thomas*
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS-INPL BP 40, F-54501 Vandú uvre-les-Nancy Cedex
K. Faisandier
Affiliation:
Laboratoire de Cristallographie, BP 6759, Rue de Chartres, F-45067 Orléans Cedex, France
I. Bihannic
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS-INPL BP 40, F-54501 Vandú uvre-les-Nancy Cedex

Abstract

The chemical, textural and structural transformations of Al13-intercalated montmorillonite, resulting from the depolymerization of the interlamellar Al13 polycations by Na salicylate solutions, were studied. Nitrogen gas adsorption shows a dramatic decrease in specific surface area from 493 to 39 m2g–1, due to the loss of microporosity. Modelling of small-angle X-ray scattering (SAXS) curves shows that the final product contains two phases: a Na-exchanged swelling phase accounting for 40% of the clay, and a fixed interlayer distance (20.8 Å ) phase accounting for 60% of the clay. The Al remaining in the clay galleries (45% of the initial Al) is composed of 13% Al13– and 87% hexacoordinated Al, probably Al(OH)03 and oligomeric Al-salicylate complexes, as shown by 27Al NMR. The instability of Al13-intercalated montmorillonite towards organic ligands is related to the hydration shell of the tridecamer, revealed by SAXS. These results focus on the necessity to take into account the presence of organic ligands in natural media when using materials such as Al13-intercalated clays.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akitt, J.W., Greenwood, N.N., Khandelwaal, B.L. & Lester, G.D. (1972) 27Al nuclear magnetic resonance studies of the hydrolysis and polymerization of the hexa-aquo-aluminum (III) cation. J. Chem. Soc. Dalton Trans. 604–613 Google Scholar
Bérend, I., Cases, J.M., François, M., Uriot, J.P., Michot, L., Masion, A. & Thomas, F. (1995) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 2. The Li+, Na+, K+, Rb+ and Cs+ exchanged forms. Clays Clay Miner. 43, 324–336.Google Scholar
Bottero, J.Y., Bruant, M. & Cases, J.M. (1988) Interactions between hydroxy-aluminium species and homoionic Na- and Ca-montmorillonite particles, as manifested by ζ potential, suspension stability and X-ray diffraction. Clay Miner. 23, 213–224.CrossRefGoogle Scholar
Cases, J.M., Bérend, I., Besson, G., François, M., Uriot, J.P., Michot, L.J. & Thomas, F. (1997) Mechanism of adsorption and desorption of water vapour by homoionic montmorillonite. 3. The Mg++, Ca++, Sr++, and Ba++ exchanged forms. Clays Clay Miner. 41, 8–22.Google Scholar
Chevalier, S., Franck, R., Lambert, J.F. & Suquet H (1992) Stability of Al-pillared saponites: evidence for disorganization during storage in air. Clay Miner. 27, 245–248.CrossRefGoogle Scholar
De Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C., van der Neuwal, A. & Osinga, T.J. (1966) The tcurve of multimolecular N2 adsorption. J. Coll. Interf. Sci. 221, 405–414.Google Scholar
Faisandier, K., Pons, C.H., Tchoubar, D. & Thomas, F. (1998) Structural organization of Na- and Kmontmorillonite suspensions in response to osmotic and thermal stresses. Clays Clay Miner. 46, 636–648.CrossRefGoogle Scholar
Furrer, G., Ludwig, C. & Schindler, P. W. (1992) On the chemistry of the Keggin Al13 polymer. I; acid-base properties. J. Coll. Interf. Sci. 149, 56–67.CrossRefGoogle Scholar
Furrer, G., Lothenbach, B., Schärli, H. & Ludwig, C. (1994) Interactions between polynuclear aluminum compounds and heavy metal ions. J. Ecol. Chem. 3, 303–312.Google Scholar
Gaboriau, H. (1991) Interstratifiés smectite-kaolinite de l’Eure. Relations entre la structure, la texture et les propriétés en fonderie. PhD thesis, Univ. Orléans, France.Google Scholar
Johansson, G. (1960) On the crystal structure of some basic aluminum salts. Acta Chem. Scand. 14, 771–773.Google Scholar
Lee, W.Y., Raythatha, R.H. & Tatarchuck, B.J. (1989) Pillared-clay catalysts containing mixed-metal complexes. J. Catal. 115, 159–179.Google Scholar
Lothenbach, B., Furrer, G. & Schulin, R. (1997) Immobilization of heavy metals by polynuclear aluminum and montmorill oni te compounds. Environ. Sci. Technol. 31, 1452–1462.CrossRefGoogle Scholar
Lothenbach, B., Furrer, G., Schärli, H. & Schulin, R. (1999) Immobilization of zinc and cadmium by montmorillonite compounds: effect of ageing and subsequent acidification. Environ. Sci. Technol. 33, 2945–2952.CrossRefGoogle Scholar
Masion, A., Thomas, F., Tchoubar, D., Bottero, J.Y. & Tekely, P. (1994) Chemistry and structure of Al(OH)/ organics precipit ates. A Small Angle X- ray Scattering study. III; Depolymerization of the Al13 polycation by organic ligands. Langmuir, 10, 4353–4356.Google Scholar
Molis, E., Thomas, F., Bottero, J.Y., Barrès, O. & Masion, A. (1996) Chemical and structural transformation of aggregated Al13 polycations, promoted by salicylate ligand. Langmuir, 12, 3195–3200.Google Scholar
Montargès, E., Michot, L.J., Lhote, F., Thomas, F. & Villiéras, F. (1995) Intercalation of Al13-polyethyleneoxide complexes into montmorillonite clay. Clays Clay Miner. 4, 417–426.Google Scholar
Pinnavaia, T.J., Tzou, M.S., Landau, S.D. & Raythatha, R.H. (1984) On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum. J. Mol. Catal. 27, 195–212.Google Scholar
Plee, D., Borg, F., Gatineau, L. & Fripiat, J.J. (1985) Highresolution solid-state 27Al and 29Si nuclear magnetic resonance study of pillared clays. J. Am. Chem. Soc. 107, 2362–2369.CrossRefGoogle Scholar
Poncelet, G. & Schutz, A. (1986) Pillared montmorillonite and beidellite. Acidity and catalytic properties. J. Chem. Reac. Org. Inorg. Const. Syst. 165–178.Google Scholar
Pons, C.H., Rousseaux, F. & Tchoubar, D. (1981) Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites. I: Etude du système eau-montmorillonite Na en fonction de la température. Clay Miner. 16, 23–42.Google Scholar
Sakurai, K. & Huang, P.M. (1998) Intercalation of hydroxy-aluminosilicate and hydroxy-aluminum in montmorillonite and resultant physicochemical properties. Soil Sci. Soc. Am. J. 62, 362–368.Google Scholar
Singh, S.S. & Kodama, H. (1988) Reactions of polynuclear hydroxyaluminum cations with montmorillonite and the formation of a 28-Å pillared complex. Clays Clay Miner. 36, 397–402.Google Scholar
Tchoubar, D., Rousseaux, F., Pons, C.H. & Lemonnier, M. (1978) Small-angle setting at LURE: description and results. Nucl. Inst. Methods, 152, 301–305.Google Scholar
Thomas, F., Bottero, J.Y., Masion, A. & Genévrier, F. (1990) Mechanisms of Aluminum III hydrolysis with acetic and oxalic acid. Chem. Geol. 84, 227–230.Google Scholar
Thomas, F., Masion, A., Bottero, J.Y. & Genévrier, F. & Boudot, D. (1991) aluminum III speciation with acetate and oxalate. A potentiometric and 27-Al NMR study. Environ. Sci. Technol. 25, 1553–1559.Google Scholar
Thomas, F., Masion, A., Bottero, J.Y., Rouiller, J., Montigny, F. & Genévrier, F. (1993) Aluminum III speciation with hydroxy-carboxylic acids. A 27Al NMR study. Environ. Sci. Technol. 27, 2511–2516.CrossRefGoogle Scholar
Turner, R.C. & Brydon, J.E. (1965) Factors affecting the solubility of Al(OH)3 precipitated in the presence of montmorillonite. Soil Sci. 100, 176–181.Google Scholar
Vicente, M.A. & Lambert, J.F. (1999) Al-pillared saponites. Part 4. Pillaring with a new Al13 oligomer containing organic ligands. Phys. Chem. Chem. Phys. 1, 1633–1639.Google Scholar
Zhu, H.Y. & Vansant, E.F. (1995) The porosity and water adsorption of alumina pillared montmorillonite. J. Coll. Interf. Sci. 171, 377–385.Google Scholar