Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T16:31:29.167Z Has data issue: false hasContentIssue false

Solubility and release of fenamates intercalated in layered double hydroxides

Published online by Cambridge University Press:  09 July 2018

M. Del Arco
Affiliation:
GIR-QUESCAT, Departamento de Química Inorgánica, Universidad de Salamanca, Salamanca, Spain
A. Fernández
Affiliation:
GIR-QUESCAT, Departamento de Química Inorgánica, Universidad de Salamanca, Salamanca, Spain
C. Martín
Affiliation:
GIR-QUESCAT, Departamento de Química Inorgánica, Universidad de Salamanca, Salamanca, Spain
M. L. Sayalero
Affiliation:
Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Salamanca, Salamanca, Spain
V. Rives*
Affiliation:
GIR-QUESCAT, Departamento de Química Inorgánica, Universidad de Salamanca, Salamanca, Spain
*

Abstract

The effect of a Mg- and Al-containing layered double hydroxide (LDH), used as an additive or as a matrix, on the dissolution and solubility of two non-steroidal anti-inflammatory drugs (NSAIDs), namely, mefenamic and meclofenamic acids, is reported. The use of MgAl-LDH enhances the solubility of mefenamic acid at the three pH values tested, and the value is larger when the acid is intercalated as opposed to simply being mixed with the layered material. For pure mefenamic acid, the most unfavourable pH is 1.2, while for the physical mixture and the sample with the intercalated drug, the most unfavourable pH is 4.5, for which the minimum increase in the amount of dissolved acid is recorded. The (dissolution) release-rate for both drugs when they are intercalated between the layers is much slower than for the physical mixture or for the dissolution of the pure drug.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, G. & Costantino, U. (1996) Layered solids and their intercalation chemistry. Pp. 123 in: Solid State Supramolecular Chemistry: Two- and Three-Dimensional Inorganic Networks (Alberti, G. & Bien, T., editors). Vol. 7, Pergamon, New York.Google Scholar
Ambrogi, V., Fardella, G., Grandolini, G. & Perioli, L. (2001) Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents I. Intercalation and in vitro release of ibuprofen. International Journal of Pharmaceutics, 220, 2332.Google Scholar
Ambrogi, V., Fardella, G., Grandolini, G., Perioli, L. & Tiralti, M.C. (2002) Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents II. Uptake of diclofenac for a controlled release formulation. AAPS PharmSciTech, 3, 7782.CrossRefGoogle ScholarPubMed
Ambrogi, V., Fardella, G., Grandolini, G. & Nochetti, M. (2003) Effect of hydrotalcite-like compounds on the aqueous solubility of some poorly water-soluble drugs. Journal of PharmaceuticalScience, 92, 14071418.Google Scholar
Barhoumi, H., Maaref, A., Rammah, M., Martelet, C., Jaffrezic, N., Mousty, C., Vial, S. & Forano, C. (2006) Urea biosensor based on Zn3Al—Urease layered double hydroxides nanohybrid coated on insulated silicon structures. Materials Science and Engineering C, 26, 328333.CrossRefGoogle Scholar
Bustamante, P. & Guzman, M. (1997) Disoluciones. Pp. 143205 in: Tecnología Farmacéutica. Aspectos fundamentals de los sistemas farmacéuticos y operaciones básicas (Vila, J.L., editor). Síntesis, Madrid.Google Scholar
Cavani, F., Trifiro, F. & Vaccari, A. (1991) Hydrotalcite-type anionic clay: Preparation, properties and applications. Catalysis Today, 11, 173301.CrossRefGoogle Scholar
Choy, J.H., Kwak, S.Y., Jeong, Y.J. & Park, J.S. (2000) Inorganic layered double hydroxides as nonviral vectors. Angewandte Chemie InternationalEdition, 39, 40424045.Google ScholarPubMed
Clearfield, A., Kieke, M., Kwan, J., Colon, J.L. & Wang, R.C. (1991) Intercalation of dodecyl sulfate into layered double hydroxides. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 11, 361378.CrossRefGoogle Scholar
Costa, P. & Sousa, J.M. (2001) Modelling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13, 123133.CrossRefGoogle ScholarPubMed
Costantino, U., Casciola, M., Massinelli, L., Nochetti, M. & Vivan, R. (1997) Intercalation and grafting of hydrogen phosphates and phosphonates into synthetic hydrotalcites and a.c.-conductivity of the compounds thereby obtained. Solid State Ionics, 97, 203212.CrossRefGoogle Scholar
De Roy, A., Forano, C., El Malki, K. & Besse, J.P. (1992) Anionic clay. Pp. 108169 in: Trends in Pillaring Chemistry in Synthesis of Microporous Materials, Vol. II Expanded Clay and other Microporous Solids (Occelli, M.L. & Robson, H.E., editors). Van Nostrand Reinhold, New York.Google Scholar
Del Arco, M., Gutierrez, S., Martín, C. , Rives, V. & Rocha, J. (2004a) Synthesis and characterization of layered double hydroxides (LDH) intercalated with non-steroidal anti-inflammatory drugs (NSAID). Journal of Solid State Chemistry, 177, 39543962.Google Scholar
Del Arco, M., Cebadera, E., Gutierrez, S., Martín, C., Montero, M.J., Rives, V., Rocha, J. & Sevilla, M.A. (2004b) Mg,Al layered double hydroxides with intercalated indomethacin: Synthesis, characterization and pharmacological study. Journal of PharmaceuticalScience, 93, 16491658.Google Scholar
Del Arco, M., Fernandez, A., Martín, C. & Rives, V. (2007) Intercalation of mefenamic and meclofenamic acid anions in hydrotalcite-like matrixes. Applied Clay Science, 36, 133140.CrossRefGoogle Scholar
Dressman, J.B. & Lennernas, H. (2000) Oral Drug Absorption: Prediction and Assessment. Marcel Dekker Inc., New York. 197198 pp.CrossRefGoogle Scholar
Drezdzon, N.A. (1988) Synthesis of isopolymetalate-pillared hydrotalcite via organic anion pillared precursors. Inorganic Chemistry, 27, 46284632.CrossRefGoogle Scholar
Fardella, G., Perioli, L., Costantino, U., Nocchetti, M., Ambrogi, V. & Grandolini, G. (1997) Intercalation of antiinflammatory agents in hydrotalcite-like compounds and controlled release formulations. Proceedings of the 24th InternationalSymposium on the Controlled Release of Bioactive Materials, 1033-1035.Google Scholar
Fardella, G., Ambrogi, V., Perioli, L. & Grandolini, G. (1998) Intercalation of Indomethacin and Tolmentin in hydrotalcite-like compounds and in vitro release. Proceedings of the 25th International Symposium on Controlled Release of Bioactive Materials, Las Vegas, 774-775.Google Scholar
Feng, Y., Li, D., Wang, Y., Evans, D.G. & Duan, X. (2006) Synthesis and characterization of a UV absorbent-intercalated Zn-Al layered double hydroxide. Polymer Degradation and Stability, 91, 789794.CrossRefGoogle Scholar
Grubel, P., Bhaskar, K.R., Cave, D.R., Garik, P., Stanley, H.E. & Lamont, J.T. (1997) Interaction of an aluminium magnesium containing antacid and gastric mucus: Possible contribution to the cytoprotective function of antacids. Alimentary Pharmacology and Therapeutics, 11, 139145.Google Scholar
Guo, Y., Zhang, H., Zhao, L., Li, G.D., Chen, J.S. & Xu, L. (2005) Synthesis and characterization of Cd-Cr and Zn-Cd-Cr layered double hydroxides intercalated with dodecyl sulfate. Journal of Solid State Chemistry, 178, 18301836.CrossRefGoogle Scholar
Li, B., He, J., Evans, D.G. & Duan, X. (2004) Inorganic layered double hydroxides as a drug delivery system —intercalation and in vitro release of fenbufen. Applied Clay Science, 27, 199207.CrossRefGoogle Scholar
Miyata, S. (1975) Syntheses of hydrotalcite-like compounds and their structures and physicochemical properties. I. Systems Mg2+-Al3+-NO3 , Mg2+-Al3+- Cl, Mg2+-Al3+-ClO4, Ni2+-Al3+-Cl and Zn2+-Al3+- Cl . Clays and Clay Minerals, 23, 369381.CrossRefGoogle Scholar
Mohanambe, L. & Vasudevan, S. (2005) Anionic clay containing anti-inflammatory drug molecules: comparison of molecular dynamics simulations and measurements. Journal of PhysicalChemistry B, 109, 1565115658.Google ScholarPubMed
Murthy, K.S. & Ghebre-Sellasie, I. (1993) Current perspectives on the dissolution stability of solid oral dosage forms. Journal of Pharmaceutical Science, 82, 113126.Google Scholar
Perioli, L., Ambrogi, V., Bertini, B., Ricci, M., Nocchetti, M., Latterini, L. & Rossi, C. (2006) Anionic clays for sunscreen agent safe use: Photoprotection, photo-stability and prevention of their skin penetration. European Journal of Pharmaceutics and Biopharmaceutics, 62, 185193.Google Scholar
Reichle, W.T. (1986) Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics, 22, 135141.CrossRefGoogle Scholar
Rives, V. (2001) Layered Double Hydroxides: Present and Future. Nova Science Publishers, New York. 251434 pp.Google Scholar
Rossi, C., Schoubben, A., Ricci, M., Perioli, L., Ambrogi, V., Latterini, L., Aloisi, G.G. & Rossi, A. (2005) Intercalation of the radical scavenger ferulic acid in hydrotalcite-like anionic clays. International Journal of Pharmaceutics, 295, 4755.CrossRefGoogle ScholarPubMed
Schoubben, A., Blasi, P., Giovagnoli, S., Nocchetti, M., Ricci, M., Perioli, L. & Rossi, C. (2006) Evaluation and optimization of the conditions for an improved ferulic acid. Intercalation into a synthetic lamellar anionic clay. PharmaceuticalResearch, 23, 604613.Google Scholar
TenHoor, C.N., Bakatselou, V. & Dressman, J. (1991) Solubility of mefenamic acid under simulated fedand fasted-state conditions. Pharmaceutical Research, 8, 12031205.CrossRefGoogle Scholar
Tronto, J., dos Reis, M.J., Silverio, F., Balbo, V.R., Marchetti, J.M. & Valim, J.B. (2004) In vitro release of citrate anionics intercalated in magnesium aluminium layered double hydroxides. Journal of Physics and Chemistry of Solids, 65, 475480.CrossRefGoogle Scholar
Vial, S., Forano, C., Shan, D., Mousty, C., Barhoumi, H., Martelet, C. & Jaffrezic, N. (2006) Nanohybridlayered double hydroxides/urease materials: Synthesis and application to urea biosensors. Materials Science and Engineering C, 26, 387393.CrossRefGoogle Scholar
Whittingham, M.S. & Jacobson, A.J. (1982) Intercalation Chemistry. Academic Press, New York.Google Scholar
Xu, Z.P., Stevenson, G., Lu, C.Q. & Lu, G.Q. (2006) Dispersion and size control of layered double hydroxides nanoparticles in aqueous solutions. Journal of PhysicalChemistry B, 110, 1692316929.Google ScholarPubMed
Zhao, H. & Nagy, K.L. (2004) Dodecyl sulfate-hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. Journal of Colloid and Interface Science, 274, 613624.CrossRefGoogle ScholarPubMed