Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-09T14:22:14.269Z Has data issue: false hasContentIssue false

Selective liquid sorption and wetting of pillared montmorillonites

Published online by Cambridge University Press:  09 July 2018

F. Berger
Affiliation:
Department of Colloid Chemistry, Attila József University, H-6720 Szeged, Hungary
I. Dekany
Affiliation:
Department of Colloid Chemistry, Attila József University, H-6720 Szeged, Hungary
K. Beneke
Affiliation:
Institute of Inorganic Chemistry, Kiel University, D-24098 Kiel, Germany
G. Lagaly
Affiliation:
Institute of Inorganic Chemistry, Kiel University, D-24098 Kiel, Germany

Abstract

Pillared montmorillonite was used as an adsorbent for binary mixtures of hydrocarbons and alcohols (benzene/n-heptane; ethanol/cyclohexane; ethanol/toluene; propanol/ toluene). The adsorbent was prepared from the Na-form of a bentonite from Milos by reaction with polyhydroxoaluminium solutions. The adsorption behaviour of the pillared montmorillonite was characterized by the adsorption excess isotherms and the heats of immersion. Sorption capacities and wetting properties differed significantly from those of the Na-montmorillonite. Benzene was adsorbed preferentially from mixtures with n-heptane. Ethanol and propanol were also preferentially adsorbed from mixtures with cyclohexane and toluene but the curves showed azeotropic points at molar fractions of alcohols of 0.7-0.9. The calorimetric data revealed the partially hydrophobic character of the pillared montmorillonite. The heat of wetting of benzene or toluene on the pillared samples was distinctly higher than that of ethanol whereas ethanol gave the highest wetting enthalpies on Na-montmorillonite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.M. (1987) Synthetic organic chemistry using pillared, cation-exchanged and acid-treated montmorillonite catalysts-A Review. App. Clay Sci. 2, 309342.CrossRefGoogle Scholar
Barrett, E.P., Joyner, L.G. & Halenda, P.P. (1951) The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373380.CrossRefGoogle Scholar
Bergaoui, L., Lambert, J.F., Franck, R., Suquet, H. & Robert, J.-L. (1995a) Al-pillared saponites III. J. Chem. Soc. Farad. Trans. 91, 22292239.CrossRefGoogle Scholar
Bergaoui, L., Lambert, J.F., Vincente-Rodriguez, M.A., Michot, H.J. & Villieras, F. (1995b) Porosity of synthetic saponites with variable layer charge pillared by Al13 polycations. Langmuir, 11, 28492852.Google Scholar
Burch, R. (1988) (Ed.), Pillared Clays. Catalysis Today, 2.Google Scholar
Butruille, J.-R. & Pinnavaia, T.J. (1992) Pp. 149-163 in: Characterization of Catalytic Materials (Wachs, I., editor), Butterworth-Heinemann, Boston.Google Scholar
Dekany, I. (1992) Liquid adsorption and immersional wetting on hydrophilic/hydrophobic solid surfaces. Pure Appl. Chem. 64, 14991509.CrossRefGoogle Scholar
Dekany, I., Szanto, F. & Lagaly, L.G. (1985a) Sorption and immersional wetting on clay minerals having modified surface, 1. Surface properties of nonswelling clay mineral organocomplexes. J. Coll. lnterf. Sci. 103, 321329.Google Scholar
Dekany, I., Szanto, F., Weiss, A. & Lagaly, G. (1985b) Interlamellar liquid sorption on hydrophobic silicates. Ber. Bunsenges. Phys. Chem. 89, 62–67.Google Scholar
Dekany, I., Szanto, F., Weiss, A. & Lagaly, G. (1986a) Interactions of hydrophobic layer silicates with alcohol-benzene mixtures, I. Adsorption isotherms. Ber. Bunsenges. Phys. Chem. 90, 422427.Google Scholar
Dekany, I., Szanto, F., Weiss, A. & Lagaly, G. (1986b) Interactions of hydrophobic layer silicates with alcohol-benzene mixtures, II. Structure and composition of the adsorption layer. Ber. Bunsenges. Phys. Chem. 90, 427431.Google Scholar
Figueras, F. (1988) Pillared clays as catalysts. Catal. Rev. Sci. Eng. 30, 457499.CrossRefGoogle Scholar
Gregg, S.J. & Sing, K.W.S. (1982) Adsorption, Surface Area and Porosity. Academic Press, London.Google Scholar
Gil, A. & Montes, M. (1994) Analysis of the microporosity in pillared clays. Langmuir, 10, 291–197.CrossRefGoogle Scholar
Izumi, Y., Urabe, K. & Onaka, M. (1992) Zeolite Clay and Heteropoly Acid in Organic Reactions. VCH Weinheim.Google Scholar
Kruse, H.H. & Lagaly, G. (1988) Automatische Apparatur zur volumometrischen Gasadsorptionsmessung. GIT Fachz. Lab. 32, 10961100.Google Scholar
Lagaly, G. (1994) Layer charge determination by alkylammonium ions. Pp. 1–46 in: CMS Workshop Lectures (Mermut, A.R., editor). Vol. 6, Clay Mineral. Soc., Boulder.Google Scholar
Lecloux, A. & Pirard, J.P. (1979) The importance of standard isotherms in the analysis of adsorption isotherms for determining the porous texture of solids. J. Coll. Interf. Sci. 70, 265281.Google Scholar
Malla, P.B. & Komarneni, S. (1990) Synthesis of highly microporous and hydrophilic alumina-pillared montmorillonite: water-sorption properties. Clays Clay Miner. 38, 363372.Google Scholar
Molinard, A. & Vansant, E.F. (1995) Controlled gas adsorption properties of various pillared clays. Adsorption 1, 49–59.Google Scholar
Occelli, M.L. & Robson, H.E. (editors) (1992) Expanded Clays and other Microporous Solids, pp. 675–694. van Nostrand Reithold, New York Naccache.Google Scholar
Pesquera, C., Gonzalez, F., Benito, I., Mendioroz, S. & Pajares, J.A. (1991) Synthesis and characterization of pillared montmorillonite catalysts. Appl. Catal. 69, 97104.CrossRefGoogle Scholar
Pinnavaia, T.J., Tzou, M.-S., Landa, S.I. & Raythatha, R.H. (1984) On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum. J. Mol. Catal. 27, 195212.Google Scholar
Samii, A.M. & Lagaly, G. (1987) Adsorption of nuclein bases on smectites. Proc. Int. Clay Conf., Denver, 363-369.Google Scholar
Schay, G. (1970) Surface Area Determination. Proc. Int. Symp. 1969 (Everett, D.H., editor), Butterworths, London.Google Scholar
Schoonheydt, R.A., Leman, H., Scorption, A., Lenotte, I. & Grobet, P. (1994). The AI pillaring of clays. Part II. Pillaring with [Al13O4(OH)24 (H2O)12]7+. Clays Clay Miner. 42, 518525.Google Scholar
Schoonheydt, R.A., van den Eynde, J., Tubbax H, Leeman, H., Stuykens, M., Lennote, I. & Stone, W.E.E. (1993) The AI pillaring of clays. Part I. Pillaring with dilute and concentrated AI solutions. Clays Clay Miner. 41, 598607.Google Scholar
Tributh, H. & Lagaly, G. (1986) Aufbereitung und Identifizierung von Boden- und Lagerst/ittentonen I. GIT Fachz. Lab. 30, 524529.Google Scholar
Witkowski, S., Dyrek, K., Sojka, Z., Djega-Mariadassou, G., Fijal, J. & Klapyta, Z. (1994) Structural heterogeneity of pillared fluorohectorite: an XRD, HRTEM, and EDX study. Clay Miner. 29, 743749.Google Scholar
Yamanaka, S., Malla, P.B., Komarneni, S. (1990) Water adsorption properties of alumina pillared montmorillonite. J. Coll. Interf Sci. 134, 5158.Google Scholar
Zhu, H.J., Maes, N., Molinard, A., Vansant, E.F. (1994) Determination of the micropore size distribution in pillared clays by gas adsorption. Microporous Materials, 3, 235243.CrossRefGoogle Scholar
Zhu, H.J., Gao, W.H. & Vansant, E.F. (1995) The porosity and water adsorption of alumina pillared montmorillonite. J. Coll. Interf. Sci. 171, 377385.Google Scholar