Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-28T08:05:36.528Z Has data issue: false hasContentIssue false

Properties and characterization of a clay raw material from Miličinica (Serbia) for use in the ceramic industry

Published online by Cambridge University Press:  02 January 2018

Maja Milošević*
Affiliation:
Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia
Mihovil Logar
Affiliation:
Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia

Abstract

The present study focused on the assessment and possible applications of the clay from the Miličinica deposit, western Serbia. X-ray diffraction (XRD), Infrared (IR) spectroscopy, Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Differential Thermal Analysis and Thermogravimetry (DTA-TG) and High Temperature Microscopy (HTM) were used to characterize the clay in question. The physical properties determined were colour, plasticity, specific surface area, particle-size distribution and cation exchange capacity (CEC). Clay minerals are the main phases in the samples studied, with illite being the predominant phase and kaolinite being present in variable amounts. Quartz, feldspars, carbonates and iron-bearing minerals were also detected. Varied technological behaviours were expected because of the mineralogy (illite and iron contents), average grain size (0.6–0.7 µm), specific surface area (≈60 m2/g) and plasticity index (≈13%). The classification of the clays studied, based on the main characteristics and using appropriate diagrams, suggests that they are easily adaptable for ceramic processes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadir, M.F., Sallam, E.H. & Bakr, I.M. (2002) Preparation of porcelain tiles from Egyptian raw materials. Ceramics International, 28, 303310.Google Scholar
Abajo, M.F. (2000) Manual sobre Fabricación de Baldosas, Tejas y Ladrillos. Eds. Beralmar S.A., Barcelona, Columbia, 360 pp.Google Scholar
AFNOR NF EN ISO 10693 (1995) Soil Quality. Determination of Carbonate Content. Volumetric Method. International Standard Organization, Geneva, Switzerland.Google Scholar
Aras, A. (2004) The change of phase composition in kaolinite- and illite-rich clay-based ceramic bodies. Applied Clay Science, 24, 257269.CrossRefGoogle Scholar
ASTM (1984) Standard test method for methylene blue index of clay (C 837-99). 1984 Annual Book of ASTM Standards, sect. 15, vol. 15.02. American Society for Testing and Materials (ASTM), Philadelphia, Pennsylvania, USA.Google Scholar
Atterberg, A. (1911) Die Plastizität der Tone. Internationale Mitteilungen der Bodenkunde, 1, 437.Google Scholar
Baccour, H., Medhioub, M., Jamoussi, F. & Mhiri, T. (2009) Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia. Journal of Materials Processing Technology, 209, 28122817.Google Scholar
Boussen, S., Sghaier, D., Chaabani, F., Jamoussi, B. & Bennour, A. (2016) Characteristics and industrial application of the Lower Cretaceous clay deposits (Bouhedma Formation), Southeast Tunisia: Potential use for the manufacturing of ceramic tiles and bricks. Applied Clay Science, 123, 210221.CrossRefGoogle Scholar
Bradley, W.F. & Grim, R.E. (1951) High temperature thermal effects of clay and related materials. American  Mineralogist, 36, 182201.Google Scholar
Brindley, G.W. (1980) Order-disorder in the clay mineral structures. Pp. 125196 in: Crystal Structures of Clay Minerals and Their X-ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London, 495 pp.Google Scholar
Brown, G. & Brindley, G.W. (1984) Crystal Structures of Clay Minerals and Their X-ray Identification. Mineralogical Society, London, 495 pp.Google Scholar
Bundy, W.M. & Ishley, J.N. (1991) Kaolin in paper filling and coating. Applied Clay Science, 5, 397420.Google Scholar
Burst, J.F. (1991) The application of clay minerals in ceramics. Applied Clay Science, 5, 421443.Google Scholar
Carretero, M.I. & Pozo, M. (2009) Clay and non-clay minerals in the pharmaceutical industry. Part I. Excipients and medical applications. Applied Clay Science, 46, 7380.Google Scholar
Chiappone, A., Marello, S., Scavia, C. & Setti, M. (2004) Clay mineral characterization through the methylene blue test: comparison with other experimental techniques and applications of the method. Canadian Geotechnical Journal, 41, 11681178.CrossRefGoogle Scholar
CIE (1932) 1931 Commission Internationale de l'Eclairage Proceedings. Huitième session. Cambridge University Press, Cambridge, UK, pp. 1929.Google Scholar
Cruz, R.C.D., Perottoni, C.A., Zorzi, J.E. & Emiliano, J.V. (2015) Technological characterization of heavy clay from the Caí River Valley in Brazil. Interceram, 64, 1419.Google Scholar
de Almeida Azzi, A., Osacký, M., Uhlík, P., Čaplovičová, M., Zanardo, A. & Madejová, J. (2016) Characterization of clays from the Corumbataí formation used as raw material for ceramic industry in the Santa Gertrudes district, São Paulo, Brazil. Applied Clay Science, 132–133, 232242.CrossRefGoogle Scholar
DIN ISO 11277, Deutsches Institut für Normung (2002) Bodenbeschaffenheit – Bestimmung der Partikelgr ßenverteilung in Mineralb den. Beuth, Berlin.Google Scholar
Dondi, M., Fabbri, B. & Guarini, G. (1998) Grain-size distribution of Italian raw materials for building clay products: a reappraisal of the Winkler diagram. Clay Minerals, 33, 435442.CrossRefGoogle Scholar
Dondi, M., Raimondo, M. & Zanelli, C. (2014) Clays and bodies for ceramic tiles: Reappraisal and technological classification. Applied Clay Science, 96, 91109.Google Scholar
Felhi, M., Tlili, A., Gaied, M.E. & Montacer, M. (2008) Mineralogical study of kaolinitic clays from Sidi El Bader in the far north of Tunisia. Applied Clay Science, 39, 208217.Google Scholar
Filipović, I., Gagić, N., Rodin, V. & Avramović, V. (1973) Tumač za list Vladimirci L. Pp. 34124 in: Zavod za Geološka i Geofizička Istraživanja (Dimitrijević, M., Karamata, S., Sikošek, B. & Veselinović, D., editors). Privredni Pregled, Beograd, Maršala Birjuzova 3, 58 pp.Google Scholar
Földvári, M. (2011) Handbook of thermogravimetric system of minerals and its use in geological practice. Occasional Papers of the Geological Institute of Hungary, vol. 213 (Maros, G., editor). Geological Institute of Hungary, 180 pp.Google Scholar
Frost, R.L., Van Der Gaast, S.J., Zbik, M., Kloprogge, J.T. & Paroz, G.N. (2002) Birdwood kaolinite: a highly ordered kaolinite that is difficult to intercalate – an XRD, SEM and Raman spectroscopic study. Applied Clay Science, 20, 177187.Google Scholar
Gaudette, H.E., Eades, J.L. & Grim, R.E. (1964) The nature of illite. Clays and Clay Minerals, 13, 3348.CrossRefGoogle Scholar
Gonzalez-Garcia, F., Romero-Acosta, V., Garcia-Ramos, G. & Gonzalez-Rodriguez, M. (1990) Firing transformations of mixtures of clays containing illite, kaolinite and calcium carbonate used by ornamental tile industries. Applied Clay Science, 5, 361375.Google Scholar
Grim, R.E. (1953) Clay Mineralogy. McGraw-Hill, New York, 384 pp.Google Scholar
Grim, R.E. (1962) Applied Clay Mineralogy. McGraw-Hill, New York, 422 pp.Google Scholar
Grimshaw, R.W. (1971) Physics and Chemistry of Clay. 4th Edition. Ernest Benn, London, 1024 pp.Google Scholar
Güven, N. (2001) Mica structure and fibrous growth of illite. Clays and Clay Minerals, 49, 189196.Google Scholar
Harvey, C.C. & Murray, H.H. (1997) Industrial clays in the 21st century: A perspective of exploration, technology and utilization. Applied Clay Science, 11, 285310.Google Scholar
Jackson, M.J. & Mills, B. (2001) Vitrification heat treatment and dissolution of quartz grinding wheel bonding systems. British Ceramic Transactions, 100, 18.CrossRefGoogle Scholar
Jouenne, C.A. (1990) Traite de ceramiques et materiaux mineraux. Editor: Septima, Paris, 657 pp.Google Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. (2005) Halloysite clay minerals – a review. Clay Minerals, 40, 383426.Google Scholar
Kamseu, E., Leonelli, C., Boccaccini, D.N., Veronesi, P., Miselli, P., Pellacani, G. & Chinje Melo, U. (2007) Characterisation of porcelain compositions using two china clays from Cameroon. Ceramics International, 33, 851857.CrossRefGoogle Scholar
Lawrence, W.G. (1972) Ceramic Science for the Potter. Chilton Book Co., Philadelphia, Pennsylvania, USA, 239 pp.Google Scholar
L.C.P.C. (1987) Limites d'Atterberg, limite de liquidité, limite de plasticité, method d'essai LPC, n°19. Publication L. C. P. C., 26 pp.Google Scholar
Madejová, J. (2003) FTIR techniques in clay mineral studies. Review. Vibrational Spectroscopy, 31, 110.Google Scholar
Madejová, J., Kečkéš, J., Pálková, H. & Komadel, P. (2002) Identification of components in smectite/kaolinite mixtures. Clay Minerals, 37, 377388.CrossRefGoogle Scholar
Matthew, G.O. & Fatile, B.O. (2014) Characterization of vitrified porcelain tiles using feldspar from three selected deposits in Nigeria. Research Journal of Recent Sciences, 3, 6772.Google Scholar
Milošević, M., Logar, M., Dojčinović, B., Rosić, A. & Erić, S. (2016) Diffuse reflectance spectra of methylene blue adsorbed on different types of clay samples. Clay Minerals, 5, 115.Google Scholar
Mitrović, A.A., Komljenović, M.M. & Ilić, B.R. (2009) Ispitivanja Mogućnosti Korišćenja Domaćih Kaolinskih Glina Za Proizvodnju Metakaolina. Hemijska Industrija, 63, 107113.Google Scholar
Monteiro, S.N. & Vieira, C.M.F. (2004) Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil. Applied Clay Science, 27, 229234.Google Scholar
Mukherjee, S. (2013) The Science of Clays. Applications in Industry, Engineering and Environment. Co-published by Springer, The Netherlands with Capital Publishing Company, New Delhi, India, 335 pp.Google Scholar
Murray, H.H. (1991) Overview – clay mineral applications. Applied Clay Science, 5, 379395.Google Scholar
Murray, H.H. (1995) Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 3949.CrossRefGoogle Scholar
Murray, H.H. (2007) Applied Clay Mineralogy: Occurrences, Processing, and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays. Elsevier, Amsterdam, 180 pp.Google Scholar
Murray, H.H. & Kogel, J.E. (2005) Engineered clay products for the paper industry. Applied Clay Science, 29, 199206.CrossRefGoogle Scholar
Norton, F.H. (1970) Fine Ceramics Technology and Applications. McGraw-Hill Book Company, New York, 507 pp.Google Scholar
Okada, K. & Otsuka, N. (1986) Characterization of spinel phase from SiO2–Al2O3 xerogels and the formation process of mullite. Journal of the American Ceramic Society, 69, 652656.Google Scholar
Prasad, M.S., Reid, K.J. & Murray, H.H. (1991) Kaolin: processing, properties and applications. Applied Clay Science, 6, 87119.Google Scholar
Radosavljević, S., Stojanović, M. & Branković, A. (1994) Ceramic clays of Tamnava Tertiary basin (west Serbia). Industrial Ceramics, 14, 155158.Google Scholar
Radosavljević, S., Stojanović, J., Radosavljević-Mihajlović, A., Vuković, N., Matijašević, S., Stojanović, M. & Kašić, V. (2014) Ceramic clays from the western part of the Tamnava Tertiary Basin, Serbia: deposits and clay types. Geoloski Anali Balkanskog poluostrva, 75, 7583.CrossRefGoogle Scholar
Rivi, A. & Ries, B. (1997) Single-line dry grinding technology. Ceramic World, 24, 132141.Google Scholar
Saikia, N.J., Bharali, D.J., Sengupta, P., Bordoloi, D., Goswamee, R.L., Saikia, P.C. & Borthakur, P.C. (2003) Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Applied Clay Science, 24, 93103.CrossRefGoogle Scholar
Silva-Valenzuela, M.G., Matos, C.M., Shah, L.A., Carvalho, F.M.S., Sayeg, I.J. & Valenzuela-Diaz, F.R. (2013) Engineering properties of kaolinitic clay with potential use in drugs and cosmetics. International Journal of Modern Engineering Research (IJMER), 3, 163165.Google Scholar
Singh, B. & Gilkes, R.J. (1992) An electron optical investigation of the alteration of kaolinite to halloysite. Clays and Clay Minerals, 40, 212229.Google Scholar
Valášková, M. (2015) Clays, clay minerals and cordierite ceramics – A review. Ceramics – Silikáty, 59, 331340.Google Scholar
Vieira, C.M.F., Sánchez, R. & Monteiro, S.N. (2008) Characteristics of clays and properties of building ceramics in the state of Rio de Janeiro, Brazil. Construction and Building Materials, 22, 781787.CrossRefGoogle Scholar
Viseras, C., Aguzzi, C., Cerezo, P. & Lopez-Galindo, A. (2007) Uses of clay minerals in semisolid health care and therapeutic products. Applied Clay Science, 36, 3750.CrossRefGoogle Scholar
Wilson, I.R. (1998) The constitution, evaluation and ceramic properties of ball clays. Cerâmica, 44, 88117.CrossRefGoogle Scholar
Winkler, H.G.F. (1954) Bedeutung der Korngrössenverteilung und des Mineral-bestandes von Tonen für die Herstellung grobkerarnischer Erzeugnisse. Berichte der Deutschen Keramischen Gesellschaft, 31, 337343.Google Scholar