Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T11:46:22.067Z Has data issue: false hasContentIssue false

Precursor-support interactions in the preparation of sepiolite-supported Ni and Pd catalysts

Published online by Cambridge University Press:  09 July 2018

J. A. Anderson
Affiliation:
Department of Chemistry, The University, Dundee, DD1 4HN, UK
M. Galan-Fereres
Affiliation:
Department of Chemistry, The University, Dundee, DD1 4HN, UK

Abstract

Naturally occurring sepiolite has been used as a support in the preparation of Ni and Pd catalysts. A precipitation procedure has been applied for both metals to deposit the precursor on to the support surface. The interaction between the sepiolite and the metal precursor has been studied by use of IR and solid-state MAS-NMR. Results show that SiOH groups are consumed in forming the Ni precursor whereas no specific interactions occur in the case of the Pd. However, strong interactions between metal precursor and the tetrahedral sheet occur for both metals leading to precursors which show a high stability under reducing conditions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.A., Falconer, S.E. & Galàn-Fereres, M. (1997) Ni/Sepiolite hydrogénation catalysts (1) Precursor-support interaction and nature of exposed metal surfaces. Spectrochim. Acta, Part A, 53, 26272639.CrossRefGoogle Scholar
Anderson, J.A., Rodrigo, M.T., Daza, L. & Mendioroz, S. (1993a) Influence of the support in the selectivity of Ni/Clay catalysts for vegetable oil hydrogénation. Langmuir, 9, 24852490.CrossRefGoogle Scholar
Anderson, J.A., Daza, L., Fierro, J.G.L. & Rodrigo, M.T. (1993b) Influence of preparation method on the characteristics of nickel/sepiolite catalysts. J. Chem. Soc. Faraday Trans. 89, 36513657.Google Scholar
Anderson, J.A., Daza, L., Damyanova, S., Fierro, J.G.L. & Rodrigo, M.T. (1994) Hydrogénation of styrene over nickel/sepiolite catalysts. Appl. Catal. A, 113, 7588.Google Scholar
Aramendia, M.A., Borau, V., Jimenez C, Marinas, J.M., Porras, A., Urbano, F.J. & Villar, L. (1994) Sepiolites as supports for Pd catalysts used in organic reduction processes. J. Mol. Catal. 94, 131147.Google Scholar
Barron, P.F. & Frost, R.L. (1985) Solid state 29Si NMR examination of the 2:1 ribbon magnesium silicates, sepiolite and palygorskite. Am. Miner. 70, 758766.Google Scholar
Clause, O., Kermarec, M., Bonneviot, L., Villain, F. & Che, M. (1992) Nickel (II) ion support interactions as a function of preparation method of silica supported nickel materials. J. Am. Chem. Soc. 114, 47094717.CrossRefGoogle Scholar
Cannings, F.R. (1968) An infrared study of the hydroxyl groups on sepiolite. J. Phys. Chem. 72, 10721074.Google Scholar
Chang, T-C, Chen, J.-J. & Yeh, C.-T. (1985) Temperature-programmed reduction and temperature resolved sorption studies of strong metal support interactions in supported palladium catalysts. J. Catal. 96, 5157.CrossRefGoogle Scholar
Coenen, J.W.E. (1986) Catalytic hydrogénation of fatty oils. Ind. Eng. Chem. Fundam. 25, 4352.CrossRefGoogle Scholar
Coenen, J.W.E., Boerma, H., Linsen, B.G. & de Vries, B. (1964) Selectivity in fatty oil hydrogénation. Influence of catalyst pore structure on selectivity characteristics. Pp. 1387-1400 in: Proc. 3rd Int. Cong. Catal. (Sachtler, W.M.H., Shmit, G.C.A. & Zwietering, P., editors). Amsterdam.Google Scholar
Coluccia, S., Garrone, E. & Borello, E. (1983) Infrared spectroscopic study of molecular and dissociative adsorption of ammonia on magnesium oxide, calcium oxide and strontium oxide. J. Chem. Soc. Faraday Trans. 1, 79, 607613.CrossRefGoogle Scholar
Corma, A., Perez-Pariente, J. & Soria. J. (1985) Physiochemical characteristics of Cu2+ exchanged sepiolite. Clay Miner. 20, 467475.Google Scholar
Corma, A., Mifsud, A. & Perez-Pariente, J. (1988) Influence of procedure of nickel deposition on the textural and catalytic properties of nickel/sepiolite catalysts. Ind. Eng. Chem. Res. 27, 20442050.CrossRefGoogle Scholar
Van Dillen, J.A., Geus, J.W., Hermans, L.A.M. & Van der Meijden, J. (1977) Production of supported copper and nickel catalysts by deposition-precipitation. Pp. 677-685 in: Proc. 6th Int. Cong. Catal. (Bond, G.C., Wells, P.B. & Tompkins, F.C., editors). The Chemical Society, London.Google Scholar
D'Espinose de la Caillerie, J.B. & Fripiat, J.J. (1994) A reassessment of the 29Si MAS-NMR spectra of sepiolite and aluminated sepiolite. Clay Miner. 29, 313318.Google Scholar
Fagherazzi, G., Benedetti, A., Polizzi, S., Di Mario, A., Pinna, F., Signaretto, M. & Pernicone, N. (1995) Structural investigations on the stoichiometry of P-PdHx in Pd/Si02 catalysts as a function of metal dispersion. Catal. Letters. 32, 293303.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331-363 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society, London.Google Scholar
Galàn, E. (1996) Properties and applications of Palygorskite-sepiolite clays. Clay Miner. 31, 443453.CrossRefGoogle Scholar
Ghuge, K.D. & Babu, G.P. (1995) Infrared investigation on metal-support interactions in Ni-Si02 catalyst precursors: Role of silica. J. Catal. 151, 453455.Google Scholar
Guo, S-L., Arai, M. & Nishiyama, Y. (1990) Activation of a silica-supported nickel catalyst through surface modification of the support. Appl. Catal. 65, 3144.Google Scholar
Kermarec, M., Patel, M., Rabette, P., Pezerat, H. & Delafosse, D. (1983) Reactivity and structure of nickel exchanged prayssac vermiculite. J. Chem. Soc., Faraday Trans. 1, 79, 599606.CrossRefGoogle Scholar
Komarneni, S., Fyfe, C.A. & Kennedy, G.J. (1986) Detection of non-equivallent Si sites in sepiolite and palygorskite by solid state 29Si magic angle spinning nuclear magnetic resonance. Clays Clay Miner. 34, 99102.Google Scholar
Kung, M.C. & Kung, H.H. (1985) IR studies of NH3, pyridine, CO and NO adsorbed on transition metal oxides. Catal. Rev.-Sci. Eng. 27, 425460.Google Scholar
Martin, M.A., Pajares, J.A. & Gonzàlez-Tejuca, L. (1985) Particle size determination of palladium supported sepiolite and aluminium phosphate. J. Coll. Inter. Sci. 107, 540546.CrossRefGoogle Scholar
Martinez-Ramirez, S., Puertas, F. & Blanco-Varela, M.T. (1996) Stability of sepiolite in neutral and alkaline media at room temperature. Clay Miner. 31, 225232.CrossRefGoogle Scholar
Montes, M., Soupart, J.-B., de Saedeleer, M., Hodnett, B.K. & Delmon, B. (1984) The stability of Ni/Si02 catalysts during cyclic oxidation-reduction treatments. J. Chem. Soc. Faraday Trans. 80, 32093220.CrossRefGoogle Scholar
Morrow, B.A. (1990) Surface groups on oxides. Pp. A160-A224 in: Spectroscopic Characterisation of Heterogeneous Catalysts (Fierro, J.L.G., editor). Elsevier, Amserdam.Google Scholar
Ross, R.A., Martin, G.D. & Cook, W.G. (1975) Hydrogénation of olefins over nickel/silica catalysts. Ind. Eng. Prod. Res. Dev. 14, 151154.Google Scholar
Richardson, J.T. & Dubus, R.J. (1978) Preparation variables in nickel catalysts. I Catal. 54, 207218.CrossRefGoogle Scholar
Van der Marel, H.W. & Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures, p. 41. Elsevier Scientific Publishing Company, New York.Google Scholar
Vicente Rodriguez, M.A., Lopez Gonzalez, de D.J. & Banares Munoz, M.A. (1994) Acid activation of a Spanish sepiolite: Physiochemical characterisation, free silica content and surface area of products obtained. Clay Miner. 29, 361367.Google Scholar
Zhang, L., Lin, J. & Chen, Y. (1992) Studies of surface NiO species in NiO/Si02 catalysts using temperature programmed reduction and X-ray diffraction. J. Chem. Soc. Faraday Trans. 88, 20752078.Google Scholar
Zielinski, J. (1995) Reducibility of silica supported nickel oxide. Catal. Lett. 31, 4756.Google Scholar