Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-05T08:48:50.562Z Has data issue: false hasContentIssue false

Nature of dioctahedral micas in Spanish red soils

Published online by Cambridge University Press:  09 July 2018

J. M. Martin-Garcia
Affiliation:
Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Jaén, Paraje Las Lagunillas, 23071, Jaén, Spain
G. Delgado
Affiliation:
Departamento de Edafología y Química Agrícola, Facultad de Farmacía, Universidad de Granada, Campus Cartuja, 18071, Granada, Spain
M. Sanchez-Maranon
Affiliation:
Departamento de Edafología y Química Agrícola, Universidad de Almería, 04120, Almería, Spain
J. F. Parraga
Affiliation:
Departamento de Edafología y Química Agrícola, Facultad de Farmacía, Universidad de Granada, Campus Cartuja, 18071, Granada, Spain
R. Delgado
Affiliation:
Departamento de Edafología y Química Agrícola, Universidad de Almería, 04120, Almería, Spain

Abstract

Structural formulae and other crystallochemical parameters were used to study different species of dioctahedral micas in clay and coarse gravel fractions of horizons from a red soil (Ultic Haploxeralf) in southern Spain. Mineralogical analyses using X-ray powder diffraction, and measurements of the b0 parameter revealed dioctahedral micas, illite and paragonite. Structural formulae established from electron microprobe analysis and energy dispersive X-ray analysis showed the illites to be K mica related in elemental composition and structure to muscovite and phengite. The paragonites were found to be closer to ideal mica. Structural formulae for Na-K dioctahedral micas were obtained with crystallochemical characteristics intermediate between those of Na micas and K micas. The possibilty of these micas representing individual mineral phases or intergrowths of Na and K micas is discussed. In the soil profile, micas from the Bt horizon showed the largest crystallochemical changes induced by pedogenesis.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alien, B.L. & Hajek, B.F. (1989) Mineral occurrence in soil environments. Pp. 199–278 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Sci. Soc. Am. Book Series No. 1, Madison, USA.Google Scholar
Bailey, S.W. (1980) Summary of recommendation of AIPEA nomenclature committee on clay minerals. Clay Miner. 15, 8593.Google Scholar
Barahona, E. (1974) Arcillas de ladrillería de la provincia de Granada. Evaluación de algunos ensayos de materias primas. PhD thesis, Univ. Granada, Spain.Google Scholar
Baxter, S.M., Peacor, D.R. & Jiang, W.T. (1991) Transmission electron microscope observations of illite polytypism. Clays Clay Miner 39, 540550.Google Scholar
Blencoe, J.G., Guidotti, C.V. & Sassi, F.P. (1994) The paragonite-muscovite solvus: II. Numerical geothermometers for natural, quasibinary paragonite- muscovite pairs. Geochim. Cosmochim. Acta, 58, 22772288.CrossRefGoogle Scholar
Bohor, B.F. & Hughes, R.E. (1971) Scanning electron microscopy of clays and clay minerals. Clays Clay Miner. 19, 4954.Google Scholar
Brearley, A.J. (1990) Transmision electron microscopy of phyllosilicate minerals from low-grade cloritoidbearing rocks, North Wales. Pp. 135-152 in: CMS Workshop Lectures, Vol. 2, Electron-Optical Methods in Clay Science (Mackinnon, I.D.R. & Mumpton, F.A., editors). The Clay Miner. Soc., Evergreen, Colorado.Google Scholar
Brown, G. & Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. Pp. 305–359 in: Crystal Structures of Clay Minerals and X-ray Identification (Brindley, G.W. & G. Brown, editors). Mineralogical Society Monograph 5, London.Google Scholar
Calvert, C.S., Buol, S.W. & Weed, S.B. (1980) Mineralogical characteristics and transformations of a vertical rock-saprolite-soil sequence in the North Carolina Piedmont. I. Profile morphology, chemical composition and mineralogy. Soil Sci. Soc. Am. J. 44, 10961103.CrossRefGoogle Scholar
Colombo, C. & Torrent, J. (1991) Relationships between aggregation and iron oxides in terra rossa soils from Southern Italy. Catena, 18, 5159.Google Scholar
Delgado, R., Barahona, E., Huertas, F. & Linares, J. (1982) Los mollisoles en la cuenca alta del río Dílar (Sierra Nevada). An. Edafi Agrobiol. XLI, 59-82.Google Scholar
Delgado, R., Párraga, J.F., Delgado, G., Huertas, F. & Linares, J. (1990) Gen∼se d'un sol fersiallitique de la Formation Alhambra (Granada-Espagne). Sci. Sol 28, 5370.Google Scholar
Delgado, R., Aguilar, J. & Delgado, G. (1994) Use of numerical estimators and multivariate analysis to characterize the genesis and pedogenic evolution of Xeralfs from Southern Spain. Catena, 23, 309325.Google Scholar
Fanning, D.S., Keramidas V,Z. & El-Desoky, M.A. (1989) Micas. Pp. 551-634 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Sci. Soc. Am., Book Series No. 1, Madison, USA.Google Scholar
Garcéa-González, M.T. & Aragoneses, F.J. (1990) Paragonite in Spanish ‘rana’ soils. J. Soil Sci. 41, 313323.Google Scholar
González-García, S. & Sáinchez-Camazano, M. (1968) Differentiation of kaolinite from chlorite by treatment with dimethylsulphoxide. Clay Miner. 7, 446451.Google Scholar
Graf von Reichenbach, H. & Rich, C.I. (1975) Finegrained micas in soils. Pp. 59–95 in: Soil Components. Vol. 2. Inorganic Components (Gieseking, J.E., editor). Springer-Verlag, Berlin.Google Scholar
Griffen, D.T. (1992) Silicate Crystal Chemistry. Oxford University Press, New York.Google Scholar
Guidotti, C.V. (1984) Micas in metamorphic rocks. Pp. 357-467 in: Micas (Bailey, S.W. editor). Reviews of Mineralogy, Vol. 13. Miner. Soc. Am., Washington DC, USA.Google Scholar
Guidotti, C.V., Sassi, F.P. & Blencoe, J.G. (1989) Compositional controls on the a and b cell dimensions of 2M1 muscovite. Eur. J. Miner. 1, 71–84.CrossRefGoogle Scholar
Guidotti, C.V., Mazzoli, C., Sassi, F.P. & Blencoe, J.G. (1992) Compositional controls on the cell dimensions of 2M1 muscovite and paragonite. Eur. J. Miner. 4, 283-297.CrossRefGoogle Scholar
Guidotti, C.V., Sassi, F.P., Blencoe, J.G. & Selverstone, J. (1994a) The paragonite-muscovite solvus: I. P-T-X limits derived from the Na-K compositions of natural, quasibinary paragonite-muscovite pairs. Geochim. Cosmochim. Acta, 59, 2269–2275.Google Scholar
Guidotti, C.V., Sassi, F.P., Sassi, R. & Blencoe, J.G. (1994b) The effects of ferromagnesian components on the paragonite-muscovite solvus: a semiquantitative analysis based on chemical data for natural paragonite-muscovite pairs. J. Met. Geol. 12, 779788.Google Scholar
Jong, K., Wijbrans, J.R. & Féraud, G. (1992) Repeated thermal resetting of phengites in the Mulhacen Complex (Betic Zone, southeastern Spain) shown by a 40Ar/39Ar step heating and single grain laser probe dating. Earth Planet. Sci. Lett. 110, 173191.Google Scholar
Klug, H.P. & Alexander, L.E.C. (1976) X-ray Diffraction Procedures for Poly crystalline and Amorphous Material. Wiley, New York.Google Scholar
Kononova, M.M. (1981) Materia Orgdnica del Suelo. Oikos-Tau, Barcelona, Spain.Google Scholar
Laird, D.A. & Nater, E.A. (1993) Nature of the illitic phase associated with randomly interstratified smectite/illite in soils. Clays Clay Miner. 41, 280287.Google Scholar
Levy, D.B. & Graham, R.C. (1993) Paragonite in soils derived from quartz-mica schist in Northern California. Soil Sci. 155, 123130.Google Scholar
Li, G., Peacor, D.R., Merriman, R.J. & Roberts, B. (1994) The diagenetic to low-grade metamorphic evolution of matrix white micas in the system muscoviteparagonite in a mudrock from Central Wales, United Kingdom. Clays Clay Miner. 42, 369381.Google Scholar
Martin, R.T., Bailey, S.W., Eberl, D.D., Fanning, D.S., Guggenheim, S., Kodama., Pevear, D.R., Srodon, J. & Wicks, F.J. (1991) Report of the Clay Minerals Society Nomenclature Committee: Revised classification of clay materials. Clays Clay Miner. 39, 333335.CrossRefGoogle Scholar
Martín-García, J.M. (1994) La génesis de Suelos Rojos en el macizo de Sierra Nevada. PhD thesis, Univ. Granada, Spain.Google Scholar
Martín-Pozas, J.M., Rodrfguez-Gallego, M. & Martín-Vivaldi, J.L. (1969) An∼ilisis cuantitativo de filosilicatos de la arcilla por difracción de Rayos X. Parte IV. An. R. Soc. Esp. Fis. Quim. 55, 109112.Google Scholar
Martín-Ramos, J.D. (1976) Las micas de las Cordilleras Bdticas. Zonas Internas. PhD thesis, Univ. Granada, Spain.Google Scholar
Martín-Ramos, J.D., Hidalgo, M.A., Rodríguez-Gallego, M. & Otalora, F. (1989) Estudio cristalquímico de micas de Sierra Nevada. Cordillera Bética. Bol. Soc. Esp. Miner. 12, 101-111.Google Scholar
Niskanen, E. (1964) Reduction of orientation effects in the quantitative X-ray diffraction analysis of kaolin minerals. Am. Miner. 49, 705–714.Google Scholar
Pena, F. & Torrent, J. (1984) Relationships between phosphate sorption and iron oxides in Alfisols from a river terrace sequence of Mediterranean Spain. Geoderma, 33, 283296.Google Scholar
Puga, E. (1976) Investigaciones petrológicas en Sierra Nevada Occidental, PhD thesis, Univ. Granada, Spain.Google Scholar
Puga, E. & Díaz de Federico, A. (1976) Metamorfismo polifásico y deformaciones alpinas en el Complejo de Sierra Nevada (Cordillera Bética). Implicaciones geodinámicas. Reunión sobre la Geodinámica de las Cordilleras Béticas y el Mar de Alborán. Pp. 79-111. Servicio de Publicaciones de la Universidad de Granada, Granada, Spain.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. US Geol. Surv. Prof Pap., 391 C., 31 pp.Google Scholar
Serratosa, J.M. & Bradley, W.F. (1958) Determination of the orientation of OH bond axes in layer silicates by infrared absorption. J. Phys. Chem. 62, 11641167.Google Scholar
Shau, Y.H., Feather, M.E., Essene, E.J. & Peacor, D.R. (1991) Genesis and solvus relations of submicroscopically intergrown paragonite and phengite in a blueschist from northern California. Contrib. Miner. Pet. 106, 367378.Google Scholar
Smoliar-Zviagina, B.B. (1993) Relationships between structural parameters and chemical composition of micas. Clay Miner. 28, 603624.Google Scholar
Soil Conservation Service (1972) Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples (Rev.). US Dep. Agr. SSIR1, Washington DC, USA.Google Scholar
Soil Survey Staff (1975) Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Soil Conservation Service. US Dep. Agr. Agriculture Handbook No. 436, Washington DC, USA.Google Scholar
Soil Survey Staff (1994) Keys to Soil Taxonomy (Sixth edition). Soil Conservation Service. US Dep. Agr., Washington DC, USA.Google Scholar
Srodofi, J. & Eberl, D.D. (1984) Illite. Pp. 495-544 in: Micas (Bailey, S.W., editor) Rewiews in Mineralogy, Vol. 13. Miner. Soc. Am., Washington DC, USA.Google Scholar
Velde, B. (1985) Clay Minerals. A Physico-Chemical Explanation of their Occurrence. Developments in Sedimentology, Vol. 40. Elsevier, Amsterdam.Google Scholar
Weaver, C.E. (1989) Clays, Muds and Shales. Developments in Sedimentology, Vol. 44. Elsevier, Amsterdam.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Developments in Sedimentology, Vol. 15. Elsevier, Amsterdam.Google Scholar
Wiewióra, A. (1990) Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: I. The mica group. Clay Miner. 25, 7381.CrossRefGoogle Scholar