Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-30T01:53:37.896Z Has data issue: false hasContentIssue false

Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review

Published online by Cambridge University Press:  09 July 2018

C. E. G. R. Schaefer*
Affiliation:
Departamento de Solos, Universidade Federal de Viçosa, 36571-000 Viçosa, Minas Gerais, Brazil
J. D. Fabris
Affiliation:
Departamento de Química, UFMG, Campus - Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
J. C. Ker
Affiliation:
Departamento de Solos, Universidade Federal de Viçosa, 36571-000 Viçosa, Minas Gerais, Brazil

Abstract

This review focuses on the clay mineralogy of the most important Brazilian soils: the Latosols, which cover >60% of the country by area, and occur in association with other soils. They are typically deep, highly-weathered soils, dominated by low-activity 1:1 clay minerals and Fe and Al oxyhydroxides, with varying proportions of these minerals, depending on parent material and weathering intensity. They are usually of low fertility, although eutric types also occur. Latosols are generally correlated with Oxisols (American soil taxonomy) and Ferralsols (WRB system). Clay mineralogy is typically monotonous: kaolinite, gibbsite, hematite, goethite, maghemite and Ti minerals (mainly ilmenite and anatase) are the prominent mineral phases in the clay fraction. Some Latosols developing on basalt from southern Brazil contain significant amounts of hydroxyl-interlayed vermiculite. Among the pedogenic oxides the most frequent are goethite (α-FeOOH), indicated by yellowish colours (2.5Y–10YR; in the absence of hematite), and hematite (α-Fe2O3), which imbues reddish colors (2.5YR–5R), even when present in very minor amounts. Maghemite (γ-Fe2O3) is less frequent; it imparts a reddish-brown colour (5YR–2.5YR) and magnetic properties. Both goethite and hematite show Al-substitution, with a greater relative proportion in soil goethites. Hence, in similar drainage conditions, goethite is less prone to dissolution than hematite. Most reddish Latosols also contain maghemite, due to partial or complete oxidation of magnetite, which generally occurs naturally or is fire-induced. Magnetite and/or maghemite are associated with trace elements which are important in plant nutrition, such as Cu, Zn and Co. The contents of gibbsite in Latosols are extremely variable, from a complete absence in brown Latosols, to 54% in red Latosols from mafic rocks. Relatively large amounts of gibbsite are found in the clay fraction of these soils and this mineral is important in P sorption in deeply weathered Latosols in association with goethite and hematite. Even though most Latosols are dystrophic, some are eutrophic, revealing an unusually large base saturation in areas under ustic regimes where the parent material is particularly rich in bases, such as basalts. This eutrophic nature is attributed to the protecting role of micro-aggregates in ferric red Latosols, which retard baseleaching from the inner aggregate. At the other extreme, some Brazilian Latosols are acric and positively-charged in sub-surface horizons, as revealed by the relationship pH KCl > pH H2O. These acric Latosols are the result of long-term weathering and intensive leaching, during which pH tends to increase to values close to the zero point charge of Fe and Al oxides (between 6 and 7), greatly increasing P adsorption, which is mainly attributed to gibbsite, goethite and hematite. Soil kaolinites in Brazilian Latosols are mostly of low crystallinity, with Hughes and Brown indexes of between 6 and 15. In this review we have discussed the role of these clay-fraction minerals in soil genesis and fertility, highlighting the marked role of inheritance from deeply-weathered parent material. Latosols typically retain large amounts of Fe oxides, some of which are magnetic, with spontaneous magnetization >1 J T–1 kg–1. In this regard, reddish Latosols developed from mafic rocks are the most representative magnetic soils, and cover as much as 3.9% of Brazil. An overview of magnetic soils on four representative examples of mafic lithologies is presented, together with some aspects of their Fe-oxide mineralogy and related field and laboratory technqiues.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonello, L.L. (1988) Mineralogy deferrified clay fractions in B horizon of pedons of VIIIth International Soil Classification Workshop. Pp. 109138 in. International Soil Classification Workshop: Classification, Characterization and Utilization of Oxisols, 8. EMBRAPA, SMSS, AID, UPR, Rio de Janeiro, Brazil.Google Scholar
Bahia Filho, A.F.C., Braga, J.M., Resende, M. & Ribeiro, A.C. (1983) Relação entre adsorção de fósforo e componentes mineralógicos da fração argila de latossolos do Planalto Central. Revista Brasileira de Ciência do Solo, 7, 221226.Google Scholar
Bognola, I.A. (1995) Caracterização química, física e mineralógica de solos intermediários entre Latossolos Brunos e Latossolos Roxos. MSc thesis, Federal University of Viçosa, Brazil.Google Scholar
Camargo, M.N., Jacomine, P.K.T., Carvalho, A.P.J. & Olmos, I.L. (1988) The Brazilian classification of Latosols. Pp. 190202 in. International Soil Classification Workshop: Classification, Characterization and Utilization of Oxisols, 8. EMBRAPA, SMSS, AID, UPR, Rio de Janeiro, Brazil.Google Scholar
Cline, M. (1975) Origin of the term Latosol. Soil Science Society of America Proceedings, 39, 162163.Google Scholar
Curi, N. (1983) Lithosequence and Toposequence of Oxisols from Goias and Minas Gerais States, Brazil. PhD thesis, Purdue University, Indiana, USA.Google Scholar
Dick, D.P. (1986) Caracterização dos óxidos de ferro e adsorção de fósforo nafração argila de horizontes B latossólicos. PhD Thesis, Federal University of Rio Grande do Sul, Brazil, 196 pp.Google Scholar
Doriguetto, A.C., Goulart, A.T., Jesus Filho, M.F., Fabris, J.D. & Santana, G.P. (1998) Ilmenite of a pedosystem developing on amphibolite. European Journal of Soil Science, 49, 541546.Google Scholar
EMBRAPA — Empresa Brasileira de Pesquisa Agropecuária (2006) Sistema Brasileiro de Classificação de Solos. 2nd edition Embrapa Solos. Rio de Janeiro, Brazil, 196 pp.Google Scholar
Fabris, J.D. & Coey, J.M.D. (2002) Espectroscopia Mössbauer do 57Fe e Medidas Magnéticas na Análise de Geomateriais. Tópicos em Ciência do Solo II, 47-102.Google Scholar
Fabris, J.D., Coey, J.M.D. & Mussel, W.N. (1998) Magnetic soils from mafic lithodomains in Brazil. Hyperfine Interactions, 113, 249258.Google Scholar
Fabris, J.D., Mussel, W.N., Coey, J.M.D., Sans, L.M.A. & Fontes, M.F. (1999) Compositional and structural variabilities of (Mg, Ti)-rich iron oxide spinels from tuffite. Revista Brasileira de Ciência do Solo, 23, 779787.Google Scholar
Fernandes, R.B.A. (2000) Atributos Mineralógicos, Cor, Adsorção e Dessorção de Fosfatos em Latosolos do Sudeste Brasileiro. PhD thesis, Federal University of Viçosa, Brazil.Google Scholar
Fontes, M.P.F. & Weed, S.B. (1991) Iron oxides in selected Brazilian Oxisols: I. Mineralogy. Soil Science Society of America Journal, 55, 11431149.Google Scholar
Fontes, M.R., Weed, S.B. & Bowen, L.H. (1992) Association of microcrystalline goethite and humic acid in some Oxisols from Brazil. Soil Science Society of America Journal, 59, 982990.Google Scholar
Gomes, I.A. (1976) Oxisols and inceptsols from gnesis in a sub-tropical area of Espírito Santo State, Brazil. PhD thesis, Purdue University, Indiana, USA.Google Scholar
Goulart, A.T., Fabris, J.D., Jesus Filho, M.F., Coey, J.M.D. & Costa, G.M. (1998) Iron oxides in a soil developed from basalt. Clays and Clay Minerals, 46, 369378.CrossRefGoogle Scholar
Gualberto, V., Resende, M. & Curi, N. (1987) Química e mineralogia de solos com altos teores de ferro da Amazonia e do Planalto Central. Revista Brasileira de Ciência do Solo, 11, 245252.Google Scholar
Hughes, J.C. & Brown, G. A. (1979) Crystallinity index for soil kaolins and its relation to parent rock, climate and soil maturity. Journal of Soil Science, 30, 557563.Google Scholar
Jackson, M.L. & Sherman, G.D. (1953) Chemical weathering of minerals in soils. Advances in Agronomy, 5, 219318.Google Scholar
Jackson, M.L. (1964) Clay transformation in soil genesis during the quaternary. Soil Science, 99, 1522.Google Scholar
Kämpf, N. & Schwertmann, U. (1983) Relações entre óxidos de ferro e a cor de solos cauliníticos do Rio Grande do Sul. Revista Brasileira de Ciência do Solo, 7, 2731.Google Scholar
Kämpf, N., Resende, M. & Curi, N. (1988a) Iron oxides in Brazilian Oxisols. Proceedings of the 8th International Soil Classification Workshop, Rio de Janeiro, Brazil, pp. 7177.Google Scholar
Kämpf, N., Klamt, E. & Schneider, P. (1988b) Oxidos de ferro em latossolos do Brasil Sul e Sudeste. Pp. 153-184 in: Reunião de classificação, correlação de solos e interpretação de aptidão agrícola, 3, Rio de Janeiro, Brazil, EMBRAPA.Google Scholar
Keller, W.D. (1957) The Principles of Chemical Weathering. Lucas Brothers, Columbia, Missouri, USA, 111 pp.Google Scholar
Kellog, C.E. (1949) Preliminary suggestions for the classification and nomenclature of great soil groups in tropical and equatorial regions. Commonwealth Bureau of Soil Science Technical Communication, 46, 7685.Google Scholar
Ker, J.C. (1995) Mineralogia, sorção e desorção de fosfato, magnetização e elementos traços de Latossolos do Brasil. PhD thesis, Federal University of Viçosa, Brazil, 181 pp.Google Scholar
Ker, J.C. (1997) Latossolos do Brasil: uma revisão. Geonomos, 5, 1740.Google Scholar
Ker, J.C. & Resende, M. (1990) Caracterização química e mineralógica de solos brunos subtropicais do Brasil. Revista Brasileira de Ciência do Solo, 14, 215225.Google Scholar
Leal, J.R. (1971) Adsorção de fosfato em Latossolos sob cerrado. MSc thesis, Federal Rural University of Rio de Janeiro, Brazil.Google Scholar
Lindsay, W.L. (1979) Chemical Equilibria in Soils. John Wiley and Sons, New York, 449 pp.Google Scholar
Macedo, J. & Bryant, R.B. (1987) Morphology, mineralogy and genesis of a hydrosequence of Oxisols in Brazil. Soil Science Society of America Journal, 51, 690698.Google Scholar
Macias-Vasquez, F. (1981) Formation of gibbsite in soils and saprolites of temperate-humid zones. Clay Minerals, 16, 4352.Google Scholar
Melo, V.F., Schaefer, C.E.G.R., Novais, R.F., Singh, B. & Fontes, M.P.F. (2002) Potassium and magnesium in clay minerals of some Brazilian soils as indicated by a sequential extraction procedure. Communications in Soil Science and Plant Analysis, 33, 22032225.Google Scholar
Melo, V.F., Corrêa, G.F. & Maschio, P.A. (2003) Importância das espécies minerais no potássio total da fração argila de solos do Triângulo Minério. Revista Brasileira de Ciência do Solo, 27.Google Scholar
Mestdagh, M.M., Vielvoye, L. & Herbillon, A.J. (1980) Iron in kaolinite II: the relationship between kaolinite cristalinity and iron content. Clay Minerals, 15, 113.Google Scholar
Möller, M.R.F. (1991) Substituição isomórfica em óxidos de ferro de Latossolos da Amazonia e suas implicações na sorção defósforo. PhD thesis, USPESALQ, Brazil.Google Scholar
Moniz, A.C. (1967) Quantitative mineralogical analysis of Brazilian soils derived from basic rocks and slate. PhD thesis, University of Wisconsin, Madison, USA.Google Scholar
Moura Filho, W. & Buol, S.W. (1976) Studies of a Latosol Roxo (Eutrustox) in Brazil; micromorphology effect on ion release. Experientiae, 21, 161177.Google Scholar
Oades, J.M. (1963) The nature and distribution of iron compounds in soils. Soils Fertilizers, 26, 6980.Google Scholar
Oliveira, J.B., Jacomine, P.K.T. & Camargo, M.N. (1992) Classes gerais de solos do Brasil - guia auxiliar para seu reconhecimento. Jaboticabal, Brazil, 201 pp.Google Scholar
Palmieri, F. (1986) A study of climosequence of soil derived from volcanic rock parent material in Santa Catarina and Rio Grande do Sul States, Brazil. PhD thesis, Purdue University, Indiana, USA, 259 pp.Google Scholar
Pinto, M.C.F., Fabris, J.D., Goulart, A.T. & Santana, G.P. (1998) Pedogenetic instability of magnetite in mafic lithology. Hyperfine Interactions, 3, 325327.Google Scholar
Potter, R.O. & Kämpf, N. (1981) Argilo-minerais e óxidos de ferro em cambissolos e latossolos sob regime climático térmico údico no Rio Grande do Sul. Revista Brasileira de Ciência do Solo, 5, 153159.Google Scholar
Resende, M. (1976) Mineralogy, chemistry, morphology and geomorphology of some soils of the Central Plateau of Brazil. PhD thesis, Purdue University, Indiana, USA, 237 pp.Google Scholar
Resende, M., Allan, J. & Coey, J.M.D. (1986) The magnetic soils of Brazil. Earth and Planetary Science Letters, 138, 322326.Google Scholar
Resende, M., Santana, D.P., Franzmeier, D.P. & Coey, J.M.D. (1988) Magnetic Properties of Brazilian Oxisols. Proceedings of the International Soil Classification Workshop, Rio de Janeiro, Brazil, pp. 78108.Google Scholar
Rezende, S.B. (1980) Geomorphology, mineralogy and genesis of four soils on gneiss in southeastern Brazil. PhD thesis, Purdue University, Indiana, USA.Google Scholar
Rodrigues-Netto, A. (1996) Influência da Mineralogia da fração argila sobre propriedades físico-químicas de solos Brasileiros. MSc thesis, Federal University of Viçosa, Brazil.Google Scholar
RolimNeto, F.C., Schaefer, C.E.G.R., Costa, L.M., Correa, M.M., Fernandes Filho, E.I. & Ibriamo, M.M. (2004) Adsorção de P, superfície específica e atributos mineralógicos em solos desenvolvidos de rochas vulcânicas de Alto Paranaíba M. Brazilian Journal Soil Science, 28, 953964.Google Scholar
Santana, D.P. (1984) Soil formation in a toposequence of Oxisols from Patos de Minas region, Minas Gerais State, Brazil. PhD thesis, Purdue University, Indiana, USA.Google Scholar
Schaefer, C.E.G.R. (2001) The B horizon microstructure of Brazilian Latosols as long term biotic constructs. Australian Journal Soil Research, 39, 909926.Google Scholar
Schaefer, C.E.G.R., Gilkes, R.J. & Fernandes, R.B.A. (2004) EDS/SEM study on microaggregates of Brazilian Latosols, in relation to P adsorption and clay fraction attributes. Geoderma, 123, 6981.Google Scholar
Schwertmann, U. & Kämpf, N. (1985) Properties of goethite and hematite in kaolinitic soils of Southern and Central Brazil. Soil Science, 139, 344350.Google Scholar
Ségalen, P. (1994) Les sols ferrallitiques et leur répartition géographique. Tome 1. Introduction générale. Les sols ferrallitiques: leu identification et environnement immédiat. Paris, editions de l’ORSTOM. Collection Études et Théses, France. 197 pp.Google Scholar
Varajão, A.F.D.C., Gilkes, R.J. & Hart, R.D. (2001) The relationships between kaolinite crystal properties and the origin of materials for a Brazilian kaolin deposit. Clays and Clay Minerals, 49, 4459.Google Scholar
Viana, J.H.M., Couceiro, P.R.C., Fabris, J.D., Fernandes Filho, E.I., Schaefer, C.E.G.R., Rechemberg, H.R., Abrahão, W.A.P. & Mantovani, E.C. (2004) Occurrence of magnetite and its transformation to hematite in the sand fraction of a Brazilian Oxisol. Australian Journal of Soil Research, 44, 7183.Google Scholar