Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-08T05:58:25.821Z Has data issue: false hasContentIssue false

Low-grade evolution of clay minerals and organic matter in fault zones of the Hikurangi prism (New Zealand)

Published online by Cambridge University Press:  22 January 2019

Tatiana Maison*
Affiliation:
UniLaSalle, UPJV, EA 7511 Basins-Reservoirs-Resources (B2R), F-60026 Beauvais, France
Sébastien Potel
Affiliation:
UniLaSalle, UPJV, EA 7511 Basins-Reservoirs-Resources (B2R), F-60026 Beauvais, France
Pierre Malié
Affiliation:
UniLaSalle, UPJV, EA 7511 Basins-Reservoirs-Resources (B2R), F-60026 Beauvais, France Laboratoire Géosciences Université de Montpellier CC, 60 Place E, Bataillon, 34095 Montpellier, Cedex 5, France
Rafael Ferreiro Mählmann
Affiliation:
Technische Universität Darmstadt, Technical and Low Temperature Petrology, Institut für Angewandte Geowissenschaften, 64287 Darmstadt, Germany
Frank Chanier
Affiliation:
Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 59000 Lille, France
Geoffroy Mahieux
Affiliation:
UPJV, UniLaSalle, EA 7511 Basins-Reservoirs-Resources (B2R), F-80000 Amiens, France
Julien Bailleul
Affiliation:
UniLaSalle, UPJV, EA 7511 Basins-Reservoirs-Resources (B2R), F-60026 Beauvais, France

Abstract

Clay minerals and organic matter occur frequently in fault zones. Their structural characteristics and their textural evolution are driven by several formation processes: (1) reaction by metasomatism from circulating fluids; (2) in situ evolution by diagenesis; and (3) neoformation due to deformation catalysis. Clay-mineral chemistry and precipitated solid organic matter may be used as indicators of fluid circulation in fault zones and to determine the maximum temperatures in these zones. In the present study, clay-mineral and organic-matter analyses of two major fault zones – the Adams-Tinui and Whakataki faults, Wairarapa, North Island, New Zealand – were investigated. The two faults analysed correspond to the soles of large imbricated thrust sheets formed during the onset of subduction beneath the North Island of New Zealand. The mineralogy of both fault zones is composed mainly of quartz, feldspars, calcite, chabazite and clay minerals such as illite-muscovite, kaolinite, chlorite and mixed-layer minerals such as chlorite-smectite and illite-smectite. The diagenesis and very-low-grade metamorphism of the sedimentary rock is determined by gradual changes of clay mineral ‘crystallinity’ (illite, chlorite, kaolinite), the use of a chlorite geothermometer and the reflectance of organic matter. It is concluded here that: (1) the established thermal grade is diagenesis; (2) tectonic strains affect the clay mineral ‘crystallinity’ in the fault zone; (3) there is a strong correlation between temperature determined by chlorite geothermometry and organic-matter reflectance; and (4) the duration and depth of burial as well as the pore-fluid chemistry are important factors affecting clay-mineral formation.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Guest Associate Editor: A. Schleicher

This paper was presented during the session ‘GG01: Clays in faults and fractures + MI-03 Clay mineral reaction progress in very low-grade temperature petrologic studies’ of the International Clay Conference 2017.

References

REFERENCES

Abad, I., Gutiérrez-Alonso, G., Nieto, F., Gertner, I., Becker, A. & Cabero, A. (2003a) The structure and the phyllosilicates (chemistry, crystallinity and texture) of Talas Ala-Tau (Tien Shan, Kyrgyz Republic): comparison with more recent subduction complexes. Tectonophysics, 365, 103127.Google Scholar
Abad, I., Nieto, F. & Gutiérrez-Alonso, G. (2003b) Textural and chemical changes in slate-forming phyllosilicates across the external-internal zones transition in the low-grade metamorphic belt of the NW Iberian Variscan Chain. Schweizerische Mineralogische und Petrographische Mitteilungen, 83, 6380.Google Scholar
Abd Elmola, A., Charpentier, D., Buatier, M., Lanari, P. & Monié, P. (2017) Textural–chemical changes and deformation conditions registered by phyllosilicates in fault zone (Pic de Port Vieux thrust, Pyrenees). Applied Clay Science, 144, 88103.Google Scholar
Allen, P.A. & Allen, J.R. (2005) Basin Analysis: Principles and Applications. Blackwell, New York, NY, USA.Google Scholar
Aparicio, P. & Galán, E. (1999) Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay Minerals, 47, 1227.Google Scholar
Árkai, P. (1991) Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology, 9, 723734.Google Scholar
Árkai, P., Sassi, F.P. & Sassi, R. (1995) Simultaneous measurements of chlorite and illite crystallinity: a more reliable tool for monitoring low- to very low grade metamorphisms in metapelites. A case study from the Southern Alps (NE Italy). European Journal of Mineralogy, 7, 11151128.Google Scholar
Árkai, P., Ferreiro Mählmann, R., Suchy, V., Balogh, K., Sýkorová, I. & Frey, M. (2002) Possible effects of tectonic shear strain on phyllosilicates: a case study from the Kandersteg area, Helvetic domain, Central Alps, Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 273290.Google Scholar
Árkai, P., Faryad, S.W., Vidal, O. & Balogh, K. (2003) Very low-grade metamorphism of sedimentary rocks of the Meliata unit, Western Carpathians, Slovakia: implications of phyllosilicate characteristics. International Journal of Earth Sciences, 92, 6885.Google Scholar
Árkai, P., Sassi, F.P. & Desmons, J. (2007) Very low- to low-grade metamorphic rocks. Pp. 3642 in: Metamorphic Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks (Fettes, D. & Desmons, J., editors). Cambridge University Press, Cambridge, UK.Google Scholar
Bailleul, J., Chanier, F., Ferrière, J., Robin, C., Nicol, A., Mahieux, G., Gorini, C. & Caron, V. (2013) Neogene evolution of lower trench-slope basins and wedge development in the central Hikurangi subduction margin, New Zealand. Tectonophysics, 591, 152174.Google Scholar
Bangs, N.L., Shipley, T.H., Moore, J.C. & Moore, G.F. (1999) Fluid accumulation and channeling along the northern Barbados décollement thrust. Journal of Geophysical Research, 104, 399414.Google Scholar
Barnes, P.M., Lamarche, G., Bialas, J., Henrys, S., Pecher, I., Netzeband, G.L., Greinert, J., Mountjoy, J.J., Pedley, K. & Crutchley, G. (2010) Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Marine Geology, 272, 2648.Google Scholar
Barrow, G. (1893) On an intrusion of muscovite–biotite gneiss in the south-eastern Highlands of Scotland and it accompanying metamorphism. Journal of the Geological Society, 49, 330358.Google Scholar
Bourdelle, F., Parra, T., Chopin, C. & Beyssac, O. (2013) A new chlorite geothermometers for diagenetic to low-grade metamorphic conditions. Contributions to Mineralogy and Petrology, 165, 723735.Google Scholar
Bruhn, R., Parry, W. & Bunds, M. (2000) Tectonics, fluid migration, and fluid pressure in a deformed forearc basin, Cook Inlet, Alaska. Geological Society of America Bulletin, 112, 550563.Google Scholar
Buatier, M.D., Chauvet, A., Kanitpanyacharoen, W., Wenk, H.R., Ritz, J.F. & Jolivet, M. (2012) Origin and behavior of clay minerals in the Bogd fault gouge, Mongolia. Journal of Structural Geology, 34, 7790.Google Scholar
Buatier, M.D., Cavailhes, T., Charpentier, D., Lerat, J., Sizun, J.P., Labaume, P. & Gout, C. (2015) Evidence of multi-stage faulting by clay mineral analysis: example in a normal fault zone affecting arkosic sandstones (Annot sandstones). Journal of Structural Geology, 75, 101117.Google Scholar
Chandra, D. (1965) Reflectance of coals carbonized under pressure. Economic Geology, 60, 621629.Google Scholar
Chanier, F. (1990) Mud volcanoes on the emerged ridge of the Hikurangi accretionary prism, New Zealand; tectonic setting and structural signification. P. 99 in: Book of Abstracts, International Conference on Fluids in Subduction Zones and Related Processes, Paris, 1990.Google Scholar
Chanier, F. (1991) Le Prisme d'Accrétion Hikurangi: Un Témoin de l’Évolution Géodynamique d'une Marge Active Péripacifique (Nouvelle-Zélande). Unpublished PhD thesis, Université des Sciences et Techniques de Lille-Flandres-Artois, Villeneuve d'Ascq, France.Google Scholar
Chanier, F. & Ferrière, J. (1989) Sur l'existence de mouvements tangentiels majeurs dans la chaîne côtière orientale de Nouvelle Zélande; signification dans le cadre de la subduction de la plaque Pacifique. Comptes Rendus de l'Académie des Sciences (Paris), 308, 16451650.Google Scholar
Chanier, F. & Ferrière, J. (1991) From a passive to an active margin: tectonic and sedimentary processes linked to the birth of an accretionary prism (Hikurangi Margin, New Zealand). Bulletin de la Société Géologique de France, 162, 649660.Google Scholar
Chanier, F., Ferrière, J. & Angelier, J. (1992) Extension et érosion tectonique dans un prisme d'accrétion: l'exemple du Prisme Hikurangi (Nouvelle-Zélande). Comptes Rendus de l'Académie des Sciences (Paris), 315, 741747.Google Scholar
Chanier, F., Ferrière, J. & Angelier, J. (1999) Extensional deformation across an active margin, relations with subsidence, uplift and rotations: the Hikurangi subduction, New Zealand. Tectonics, 18, 862876.Google Scholar
Crutchley, G.J., Pecher, I.A., Gorman, A.R., Henrys, S.A. & Greinert, J. (2010) Seismic imaging of gas conduits beneath seafloor seep sites in a shallow marine gas hydrate province, Hikurangi Margin, New Zealand. Marine Geology, 272, 114126.Google Scholar
Dalla Torre, M., Livi, K.J.T. & Frey, M. (1996) Chlorites textures and composition from high pressure/low temperature metashales and metagraywackes, Franciscan complex, Diablo Range, California, U.S.A. European Journal of Mineralogy, 8, 825846.Google Scholar
Dalla Torre, M., Ferreiro Mählmann, R. & Ernst, W.G. (1997) Experimental study on the pressure dependence of vitrinite maturation. Geochimica et Cosmochimica Acta, 61, 29212928.Google Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (2013) An Introduction to the Rock-Forming Minerals, 3rd edition. Mineralogical Society, London, UK.Google Scholar
Delteil, J., Morgans, H.E.G., Raine, J.I., Field, B.D. & Cutten, H.N.C. (1996) Early Miocene thin-skinned tectonics and wrench faulting in the Pongaroa district, Hikurangi margin, North Island, New Zealand. New Zealand Journal of Geology and Geophysics, 39, 271282.Google Scholar
Doublier, M.P, Roache, T., Potel, S. & Laukamp, C. (2012) Short-wavelength infrared spectroscopy of chlorite can be used to determine very low metamorphic grades. European Journal of Mineralogy, 24, 891902.Google Scholar
Ferreiro Mählmann, R. (2001) Correlation of very low grade data to calibrate a thermal maturity model in a nappe tectonic setting, a case study from the Alps. Tectonophysics, 334, 133.Google Scholar
Ferreiro Mählmann, R. & Frey, M. (2012) Standardisation, calibration and correlation of the Kübler-index and the vitrinite/bituminite reflectance: an inter-laboratory and field related study. Swiss Journal of Geosciences, 105, 153170.Google Scholar
Ferreiro Mählmann, R. & Giger, M. (2012) The Arosa zone in Eastern Switzerland: oceanic, sedimentary burial, accretional and orogenic very low-to low grade patterns in a tectono-metamorphic mélange. Swiss Journal of Geosciences, 105, 203233.Google Scholar
Ferreiro Mählmann, R. & Le Bayon, R. (2016) Vitrinite and vitrinite like solid bitumen reflectance in thermal maturity studies: correlations from diagenesis to incipient metamorphism in different geodynamic settings. International Journal of Coal Geology, 157, 5273.Google Scholar
Ferreiro Mählmann, R., Botzkaya, O., Potel, S., Le Bayon, R., Šegvić, B. & Nieto García, F. (2012) The pioneer work of Bernard Kübler and Martin Frey in very low-grade metamorphic terranes: paleo-geothermal potential of variation in Kübler-Index/organic matter reflectance correlations. A review. Swiss Journal of Geosciences, 105, 121152.Google Scholar
Field, B.D., Uruski, C.I. & Institute of Geological and Nuclear Sciences Limited (1997) Cretaceous–Cenozoic Geology and Petroleum Systems of the East Coast Region, New Zealand. Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand.Google Scholar
Frey, M. (1987) Low Temperature Metamorphism. Blackie, Glasgow and London, UK.Google Scholar
George, A.D. (1990) Deformation processes in an accretionary prism: a study from the Torlesse terrane of New Zealand. Journal of Structural Geology, 12, 747759.Google Scholar
George, A.D. (1992) Deposition and deformation of an Early Cretaceous trench-slope basin deposit, Torlesse terrane, New Zealand. Geological Society of America Bulletin, 104, 570580.Google Scholar
Giorgetti, G., Memmi, I. & Peacor, D. (2000) Retarded illite crystallinity caused by stress-induced sub-grain boundaries in illite. Clay Minerals, 35, 693708.Google Scholar
Guggenheim, S., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V., Eberl, D.D., Formoso, M., Galán, E., Merriman, R.J., Peacor, D.R., Stanjek, H. & Watanabe, T. (2002) Report of the AIPEA nomenclature committee for 2001: order, disorder and crystallinity in phyllosilicates and the use of the ‘crystallinity index’. Clay Minerals, 37, 389393.Google Scholar
Guidotti, C.V., Sassi, F.P. & Blencoe, J.G. (1989) Compositional controls on the a and b cell dimensions of 2M1 muscovites. European Journal of Mineralogy, 1, 7184.Google Scholar
Henry, P., Lallemant, S., Nakamura, K., Tsunogai, U., Mazzotti, S. & Kobayashi, K. (2002) Surface expression of fluid venting at the toe of the Nankai wedge and implications for flow paths. Marine Geology, 187, 119143.Google Scholar
Henrys, S.A., Woodward, D. & Pecher, I.A. (2009) Variation of bottom-simulating-reflection strength in a high-flux methane province, Hikurangi margin, New Zealand. AAPG Memoir, 89, 481489.Google Scholar
Hollis, C.J., Tayler, M., Andrew, B., Taylor, K., Lurcock, P., Bul, P., Kulhanek, D. et al. (2014) Organic-rich sedimentation in the South Pacific Ocean associated with Late Paleocene climatic cooling. Earth-Science Reviews, 134, 8197.Google Scholar
Huang, W.L., Longo, J.M. & Pevear, D.R. (1993) An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays and Clay Minerals, 41, 162162.Google Scholar
Jahren, J.S. & Aagaard, P. (1989) Compositional variations in diagenetic chlorites and illites, and relationships with formation-water chemistry. Clay Minerals, 24, 157170.Google Scholar
Kisch, H.J. (1987) Correlation between indicators of very low grade metamorphism. Pp. 227300 in: Low Temperature Metamorphism (Frey, M., editor). Blackie, Glasgow & London, UK.Google Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendation on sample preparation, X-ray diffraction settings, and interlaboratory samples. Journal of Metamorphic Geology, 9, 665670.Google Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277279.Google Scholar
Kübler, B. (1964) Les argiles, indicateurs de métamorphisme. Revue de l'lnstitut Français du Pétrole, 19, 10931112.Google Scholar
Kübler, B. (1967) La cristallinité de l'illite et les zones tout à fait supérieures du métamorphisme. Pp. 105122 in: Etages Tectoniques. Baconnière, Neuchâtel, Switzerland.Google Scholar
Kübler, B., Betrixe, M.A. & Monnier, F. (1979) Les premiers stades de la diagenèse organique et la diagenèse minérale: une tentative d’équivalence. 1ère partie: zonéographie par la maturation de la matière organique. Bulletin der Vereinigung Schweizerischer Petroleumgeologen und Petroleumingenieure, 45, 122.Google Scholar
Lacroix, B., Charpentier, D., Buatier, M., Vennemann, T., Labaume, P., Adatte, T., Travé, A. & Dubois, M. (2012) Formation of chlorite during thrust fault reactivation. Record of fluid origin and P–T conditions in the Monte Perdido thrust fault (southern Pyrenees). Contributions to Mineralogy and Petrology, 163, 10831102.Google Scholar
Le Bayon, R., Brey, G.P., Ernst, W.G. & Ferreiro Mählmann, R. (2011) Experimental kinetic study of organic matter maturation: time and pressure effects on vitrinite reflectance at 400°C. Organic Geochemistry, 42, 340355.Google Scholar
Le Pichon, X., Henry, P. & Lallemand, S. (1990) Water flow in the Barbados accretionary complex. Journal of Geophysical Research, 95, 89458968.Google Scholar
Lee, J.M. & Begg, J.G. (2002) Geology of the Wairarapa Area. Institute of Geological and Nuclear Sciences, 1:250,000 Geological Map 11. Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand.Google Scholar
Lewis, K.B. & Marshall, B.A. (1996) Seep faunas and other indicators of methane-rich dewatering on the New Zealand convergent margins. New Zealand Journal of Geology and Geophysics, 39, 181200.Google Scholar
Lewis, K. & Pettinga, J.R. (1993) The emerging, imbricate frontal wedge of the Hikurangi margin. Sedimentary Basins of the World, 2, 225250.Google Scholar
Merriman, R.J. & Frey, M. (1999) Patterns of very low-grade metamorphism in metapelitic rocks. Pp. 61107 in: Low-Grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science, Oxford, UK.Google Scholar
Merriman, R.J., Roberts, B. & Peacor, D.R. (1990) A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK. Contributions to Mineralogy and Petrology, 106, 2740.Google Scholar
Moore, G.F., Shipley, T.H., Stoffa, P.L., Karig, D.E., Taira, A., Kuramoto, S., Tokuyama, H. & Suyehiro, K. (1990) Structure of the Nankai Trough accretionary zone from multichannel seismic reflection data. Journal of Geophysical Research, 95, 87538765.Google Scholar
Moore, J.C. & Vrolijk, P. (1992) Fluids in accretionary prisms. Reviews of Geophysics, 30, 113135.Google Scholar
Moore, J.C., Moore, G.F., Cochrane, G.R. & Tobin, H.J. (1995) Negative-polarity seismic reflections along faults of the Oregon accretionary prism: indicators of overpressuring. Journal of Geophysical Research, 100, 1289512906.Google Scholar
Moore, P.R. (1988) Structural Divisions of Eastern North Island, New Zealand. New Zealand Geological Survey, Wellington, New Zealand.Google Scholar
Mullis, J., Ferreiro Mählmann, R.F. & Wolf, M. (2017) Fluid inclusion microthermometry to calibrate vitrinite reflectance (between 50 and 270°C), illite Kübler-index data and the diagenesis/anchizone boundary in the external part of the Central Alps. Applied Clay Science, 143, 307319.Google Scholar
Nicol, A. & Beavan, J. (2003) Shortening of an overriding plate and its implications for slip on a subduction thrust, central Hikurangi Margin, New Zealand. Tectonics, 22, 1070.Google Scholar
Nicol, A., Van Dissen, R., Vella, P., Alloway, B. & Melhuish, A. (2002) Growth of contractional structures during the last 10 m.y. at the southern end of the emergent Hikurangi forearc basin, New Zealand. New Zealand Journal of Geology and Geophysics, 45, 365385.Google Scholar
Nicol, A., Mazengarb, C., Chanier, F., Rait, G., Uruski, C. & Wallace, L. (2007) Tectonic evolution of the active Hikurangi subduction margin, New Zealand, since the Oligocene. Tectonics, 26, TC4002.Google Scholar
Pecher, I.A., Henrys, S.A., Wood, W.T., Kukowski, N., Crutchley, G.J., Fohrmann, M., Kilner, J., Senger, K., Gorman, A.R. & Coffin, R.B. (2010) Focussed fluid flow on the Hikurangi Margin, New Zealand – evidence from possible local upwarping of the base of gas hydrate stability. Marine Geology, 272, 99113.Google Scholar
Plaza-Faverola, A., Klaeschen, D., Barnes, P., Pecher, I., Henrys, S. & Mountjoy, J. (2012) Evolution of fluid expulsion and controls on hydrate formation across the southern Hikurangi subduction Margin, New Zealand. Geochemistry Geophysics Geosystems, 13, Q08018.Google Scholar
Plaza-Faverola, A., Pecher, I., Crutchley, G., Barnes, P., Bünz, S., Golding, T., Klaeschen, D., Papenberg, C. & Bialas, J. (2014) Submarine gas seepage in a mixed contractional and shear deformation regime: cases from the Hikurangi oblique–subduction margin. Geochemistry Geophysics Geosystems, 15, 416433.Google Scholar
Polissar, P.J., Savage, H.M. & Brodsky, E.E. (2011) Extractable organic material in fault zones as a tool to investigate frictional stress. Earth and Planetary Science Letters, 311, 439447.Google Scholar
Potel, S., Ferreiro Mählmann, R., Stern, W.B., Mullis, J. & Frey, M. (2006) Very low-grade metamorphic evolution of pelitic rocks under high-pressure/low-temperature conditions, NW New Caledonia (SW Pacific). Journal of Petrology, 47, 9911015.Google Scholar
Potel, S., Maison, T., Maillet, M., Sarr, A.C., Doublier, M .P., Trullenque, G & Ferreiro Mählmann, R. (2016) Reliability of very low-grade metamorphic methods to decipher basin evolution: case study from the Markstein basin (southern Vosges, NE France). Applied Clay Science, 134, 175185.Google Scholar
Rait, G.J., Chanier, F. & Waters, D.W. (1991) Landward and seaward directed thrusting accompanying the onset of subduction beneath New Zealand. Geology, 19, 230233.Google Scholar
Schleicher, A.M., Sutherland, R., Townend, J., Toy, V.G. & van der Pluijm, B.A. (2015) Clay mineral formation and fabric development in the DFDP-1B borehole, central Alpine fault, New Zealand. New Zealand Journal of Geology and Geophysics, 58, 1321.Google Scholar
Schmidt, D., Schmidt, S.T., Mullis, J., Ferreiro Mählmann, R. & Frey, M. (1997) Very low grade metamorphism of the Taveyanne formation of western Switzerland. Contributions to Mineralogy and Petrology, 129, 385403.Google Scholar
Sibson, R.H. & Rowland, J.V. (2003) Stress, fluid pressure, and structural permeability in seismogenic crust, North Island, New Zealand. Geophysical Journal International, 154, 584594.Google Scholar
Suneson, N.H. (1993) The geology of the Torlesse Complex along the Wellington area coast, North Island, New Zealand. New Zealand Journal of Geology and Geophysics, 36, 369384.Google Scholar
Taylor, G.H., Teichmüller, M., Davies, A., Diessel, C.F.K., Littke, R. & Robert, P. (1998) Organic Petrology. Gebrüder Borntraeger, Berlin, Germany.Google Scholar
Tilley, C.E. (1925) Metamorphic zones in the southern Highlands of Scotland. Journal of Geological Society, 81, 100112.Google Scholar
Trincal, V., Charpentier, D., Buatier, M.D., Grobety, B., Lacroix, B., Labaume, P. & Sizun, J.P. (2014) Quantification of mass transfers and mineralogical transformations in a thrust fault (Monte Perdido thrust unit, southern Pyrenees, Spain). Marine and Petroleum Geology, 55, 160175.Google Scholar
Warr, L.N. & Rice, A.H. (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141152.Google Scholar
Warr, L.N. & Ferreiro Mählmann, R. (2015) Recommendations for Kübler index standardization. Clay Minerals, 50, 282285.Google Scholar
Warr, L.N. & Cox, S.C. (2016) Correlating illite (Kübler) and chlorite (Árkai) ‘crystallinity’ indices with metamorphic mineral zones of the South Island, New Zealand. Applied Clay Science, 134, 164174.Google Scholar
Winkler, H.G.F. (1979) Petrogenesis of Metamorphic Rocks, 5th edition. Springer, Berlin, Germany.Google Scholar
Zane, A. & Weiss, Z. (1998) A procedure for classifying rock-forming chlorites based on microprobe data. Rendiconti Lincei Scienze Fisiche e Naturali, 9, 5156.Google Scholar