Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T01:02:18.093Z Has data issue: false hasContentIssue false

Interactions of pesticides with clays and layered double hydroxides: a review

Published online by Cambridge University Press:  09 July 2018

J. Cornejo*
Affiliation:
Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Avenida Reina Mercedes 10, Apdo 1052, 41080 Sevilla, Spain
R. Celis
Affiliation:
Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Avenida Reina Mercedes 10, Apdo 1052, 41080 Sevilla, Spain
I. Pavlovic
Affiliation:
Departamento de Química Inorgánica e Ingeniería Química, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, 14004 Córdoba, Spain
M. A. Ulibarri
Affiliation:
Departamento de Química Inorgánica e Ingeniería Química, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, 14004 Córdoba, Spain

Abstract

The increasing presence of pesticides in natural ecosystems has stimulated research to look for improved adsorbent materials which can be used to remediate and prevent soil and water contamination by these compounds. Among the different materials that have been assayed as adsorbents of pesticides are natural clay minerals, particularly 2:1 phyllosilicates and their structurally complementary synthetic analogues layered double hydroxides (LDHs). The great interest in natural clays and LDHs as adsorbent materials is mainly related to the large specific surface areas associated with their layered structure, the ease with which they are obtained or synthesized, and the possibility of modifying their surfaces to increase their affinity for specific adsorbates. This review summarizes the adsorptive properties of natural clays and LDHs for pesticides and related organic compounds. Particular emphasis is given to the surface modification of clay minerals and LDHs with organic ions as a strategy to improve the efficiency of these materials as pesticide adsorbents. Potential applications of unmodified and modified clays and LDHs as adsorbents to prevent and remediate soil and water contamination by pesticides are also discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguer, J.P., Hermosín, M.C., Calderón, M.J. & Cornejo, J. (2000) Fenuron sorption by homoionic natural and modified smectites. Journal of Environmental Science and Health Part B, 35, 279296.Google Scholar
Akçay, G. & Yurdakoç, K. (2000) Removal of various phenoxyalkanoic acid herbicides from water by organo-clays. Acta Hydrochimica et Hydrobiologica, 28, 300304.Google Scholar
Amin, S. & Jayson, G.G. (1996) Humic substance uptake by hydrotalcites and PILCs. Water Research, 30, 299977.Google Scholar
Anirudhan, T.S. & Ramachandran, M. (2006) Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay. Journal of Colloid and Interface Science, 299, 116124.Google Scholar
Bailey, G.W., White, J.L. & Rothberg, T. (1968) Adsorption of organic herbicides by montmorillonite: role of pH and chemical character of adsorbate. Soil Science Society of America Proceedings, 32, 222234.Google Scholar
Barrer, R.M. & Reay, J.S.S. (1957) Sorption and intercalation by methyl-ammonium montmorillonites. Transactions of the Faraday Society, 53, 12531261.Google Scholar
bin Hussein, M.Z., Yahaya, A.H., Zainal, Z. & Kian, L.H. (2005) Nanocomposite-based controlled release formulation of a herbicide, 2, 4-dichlorophenoxyacetate incapsulated in zinc-aluminium-layered double hydroxide. Science and Technology of Advanced Materials, 6, 956962.CrossRefGoogle Scholar
Boyd, S.A., Shaobai, S., Lee, J.F. & Mortland, M.M. (1988) Pentachlorophenol sorption by organo-clays. Clays and Clay Minerals, 36, 125130.CrossRefGoogle Scholar
Boyd, S.A., Jaynes, W.F. & Ross, B.S. (1991) Immobilization of organic contaminants by organoclays: application to soil restoration and hazardous waste containment. Pp. 181200 in: Organic Substances and Sediments in Water (Baker, R.A., editor). Vol 1. CRC Press, Boca Raton, Florida, USA.Google Scholar
Brixie, J.M. & Boyd, S.A. (1994) Treatment of contaminated soils with organoclays to reduce leachable pentachlorophenol. Journal of Environmental Quality, 23, 12831290.Google Scholar
Bruna, F., Pavlovic, I., Barriga, C., Cornejo, J. & Ulibarri, M.A. (2006) Adsorption of pesticides carbetamide and metamitron on organohydrotalcite. Applied Clay Science, 33, 116124.CrossRefGoogle Scholar
Cardoso, L.P., Celis, R., Cornejo, J. & Valim, J.B. (2006) Layered double hydroxides as supports for the slow release of acid herbicides. Journal of Agricultural and Food Chemistry, 54, 59685975.CrossRefGoogle ScholarPubMed
Cardoso, E. & Valim, J.B. (2006) Study of acids herbicides removal by calcined Mg-Al-CO3-LD. Journal of Physics and Chemistry of Solids, 67, 987993.CrossRefGoogle Scholar
Carmody, O., Frost, R., Xi, Y.F. & Kokot, S. (2007) Adsorption of hydrocarbons on organo-clays: implications for oil spill remediation. Journal of Colloid and Interface Science, 305, 1724.CrossRefGoogle ScholarPubMed
Carrizosa, M.J., Calderón, M.J., Hermosín, M.C. & Cornejo, J. (2000) Organosmectite as sorbent and carrier of the herbicide bentazone. Science of the Total Environment, 247, 285293.Google Scholar
Carrizosa, M.J., Koskinen, W.C., Hermosín, M.C. & Cornejo, J. (2001) Dicamba adsorption-desorption on organoclays. Applied Clay Science, 18, 223231.Google Scholar
Cavani, F., Trifiro, F. & Vaccari, A. (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catalysis Today, 11, 173301.Google Scholar
Celis, R., Cornejo, J., Hermosín, M.C. & Koskinen, W.C. (1997) Sorption-desorption of atrazine and simazine by model soil colloidal components. Soil Science Society of America Journal, 61, 436443.Google Scholar
Celis, R., Koskinen, W.C., Cecchi, A., Bresnahan, G., Carrisoza, M.J., Ulibarri, M.A., Pavlovic, I. & Hermosín, M.C. (1999) Sorption of the ionizable pesticide imazamox by organoclays and organohydrotalcites. Journal of Environmental Science and Health Part B, 34, 929941.Google Scholar
Celis, R., Koskinen, W.C., Hermosín, M.C., Ulibarri, M.A. & Cornejo, J. (2000a) Triadimefon interactions with organoclays and organohydrotalcites. Soil Science Society of America Journal, 64, 3643.CrossRefGoogle Scholar
Celis, R., Hermosín, M.C. & Cornejo, J. (2000b) Heavy metal adsorption by functionalized clays. Environmental Science and Technology, 34, 45934599.CrossRefGoogle Scholar
Celis, R., Hermosín, M.C., Carrizosa, M.J. & Cornejo, J. (2002a) Inorganic and organic clays as carriers for controlled release of the herbicide hexazinone. Journal of Agricultural and Food Chemistry, 50, 23242330.Google Scholar
Celis, R., Hermosín, M.C., Cornejo, L., Carrizosa, M.J. & Cornejo, J. (2002b) Clay-herbicide complexes to retard picloram leaching in soil. International Journal of Environmental Analytical Chemistry, 82, 503517.CrossRefGoogle Scholar
Chisem, I.C. & Jones, W. (1994) Ion-exchange properties of lithium aluminum layered double hydroxides. Journal of Materials Chemistry, 4, 17371744.Google Scholar
Choy, J.H., Choi, S.J., Oh, J.M. & Park, T. (2007) Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36, 122132.Google Scholar
Clearfield, A., Kieke, M., Kwan, J., Colon, J.L. & Wang, R.C. (1991) Intercalation of dodecyl-sulfate into layered double hydroxides. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 11, 361378.Google Scholar
Cornejo, J., Celis, R., Cox, L. & Hermosín, M.C. (2004) Pesticide-clay interactions and formulations. Pp. 247266 in: Clay Surfaces: Fundamentals and Applications (Wypych, F. & Satyanarayana, K.G., editors). Elsevier, Amsterdam.CrossRefGoogle Scholar
Cowan, C.T. & White, D. (1963) Adsorption by organoclay complexes. Pp. 459467 in: The Ninth National Conference on Clays and Clay Minerals (Swineford, A., editor). Pergamon Press, New York.Google Scholar
Cox, L., Hermosín, M.C. & Cornejo, J. (1995) Adsorption mechanisms of thiazafluron in mineral soil clay components. European Journal of Soil Science, 46, 431438.Google Scholar
Cruz-Guzmán, M., Celis, R., Hermosín, M.C. & Cornejo, J. (2004) Adsorption of the herbicide simazine by montmorillonite modified with natural organic cations. Environmental Science and Technology, 38, 180186.CrossRefGoogle ScholarPubMed
Cruz-Guzmán, M., Celis, R., Hermosín, M.C., Koskinen, W.C. & Cornejo, J. (2005) Adsorption of pesticides from water by functionalized organobentonites. Journal of Agricultural and Food Chemistry, 53, 75027511.CrossRefGoogle ScholarPubMed
Cruz-Guzmán, M., Celis, R., Hermosín, M.C., Koskinen, W.C., Nater, E.A. & Cornejo, J. (2006) Heavy metal adsorption by montmorillonites modified with natural organic cations. Soil Science Society of America Journal, 70, 215221.Google Scholar
Daza, L., Mendioroz, S. & Pajares, J.A. (1991) Mercury adsorption by sulfurized fibrous silicates. Clays and Clay Minerals, 39, 1421.Google Scholar
de Roy, A., Forano, C., El Malki, K. & Besse, J.P. (1992) Expanded clays and other microporous solids. Pp. 108169 in: Synthesis of Microporous Materials (Occeli, M.L. and Robson, H.E., editors). Van Nostrand Reinhold, New York.Google Scholar
del Arco, M., Fernández, A., Martín, C. & Rives, V. (2007) Intercalation of mefenamic and meclofenamic acid anions in hydrotalcite-like matrixes. Applied Clay Science, 36, 133140.Google Scholar
Dias, N.L., Gushikem, Y. & Polito, W.L. (1995) 2- Mercaptobenzothiazole clay as matrix for sorption and preconcentration of some heavy metals from aqueous solution. Analytica Chimica Acta, 306, 167172.Google Scholar
El-Nahhal, Y., Nir, S., Polubesova, T., Margulies, L. & Rubin, B. (1998) Leaching, phytotoxicity, and weed control of new formulations of alachlor. Journal of Agricultural and Food Chemistry, 46, 33053313.CrossRefGoogle Scholar
El-Nahhal, Y., Nir, S., Serban, C., Rabinovitz, O. & Rubin, B. (2001) Organo-clay formulation of acetochlor for reduced movement in soil. Journal of Agricultural and Food Chemistry, 49, 53645371.Google Scholar
Esumi, K. & Yamamoto, S. (1998) Adsorption of sodium dodecyl sulfate on hydrotalcite and adsolubilization of 2-naphtol. Colloids and Surfaces A, 137, 385388.Google Scholar
Farmer, V.C. & Mortland, M.M. (1966) An infrared study of the co-ordination of pyridine and water to exchangeable cations in montmorillonite and saponite. Journal of the Chemical Society A, 3, 344351.Google Scholar
Fernández-Pérez, M., Villafranca-Sánchez, M., Flores-Céspedes, F., Garrido-Herrera, F.J. & Pérez-García, S. (2005) Use of bentonite and activated carbon in controlled release formulations of carbofuran. Journal of Agricultural and Food Chemistry, 53, 66976703.CrossRefGoogle ScholarPubMed
Fetter, G., Ramos, E., Olguin, M.T., Bosh, P., Lopez, T. & Bulbulian, S. (1997) Sorption of I-by hydrotalcites. Journal of Radioanalytical and Nuclear Chemistry, 222, 6366.Google Scholar
Frenkel, M. (1973) Surface acidity of montmorillonites. Clays and Clay Minerals, 22, 435441.CrossRefGoogle Scholar
Gerstl, Z., Nasser, A. & Mingelgrin, U. (1998) Controlled release of pesticides into soils from clay-polymer formulations. Journal of Agricultural and Food Chemistry, 46, 37973802.CrossRefGoogle Scholar
Gevao, B., Semple, K.T. & Jones, K.C. (2000) Bound pesticide residues in soils: a review. Environmental Pollution, 108, 314.Google Scholar
Giles, C.H., MacEwan, T.H., Nakhwa, S.N. & Smith, D. (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement of the specific surface areas of solids. Journal of the Chemical Society, 3, 39733993.Google Scholar
Gonen, Y. & Rytwo, G. (2006) Using the dual-mode model to describe adsorption of organic pollutants onto an organoclay. Journal of Colloid and Interface Science, 299, 95101.CrossRefGoogle ScholarPubMed
González-Pradas, E., Villafranca-Sánchez, M., Gallego-Campo, A., Ureña-Amate, D. & Fernández-Pérez, M. (1997) Removal of atrazine from aqueous solution by natural and activated bentonite. Journal of Environmental Quality, 26, 12881291.CrossRefGoogle Scholar
González-Pradas, E., Villafranca-Sánchez, M., Gallego-Campo, A., Ureña-Amate, D. & Fernández-Pérez, M. (1999) Removal of linuron from water by natural and activated bentonite. Journal of Chemical Technology and Biotechnology, 74, 4954.Google Scholar
Groisman, L., Rav-Acha, C., Gerstl, Z. & Mingelgrin, U. (2004a) Sorption of organic compounds of varying hydrophobicities from water and industrial wastewater by long- and short-chain organoclays. Applied Clay Science, 24, 159166.Google Scholar
Groisman, L., Rav-Acha, C., Gerstl, Z. & Mingelgrin, U. (2004b) Sorption and detoxification of toxic compounds by a bifunctional organoclay. Journal of Environmental Quality, 33, 19301936.Google Scholar
Haque, R. & Sexton, R. (1968) Kinetic and equilibrium study of the adsorption of 2,4-dichlorophenoxy acetic acid on some surfaces. Journal of Colloid and Interface Science, 27, 818827.Google Scholar
Hermosín, M.C. & Cornejo, J. (1992) Removing 2,4-D from water by organo-clays. Chemosphere, 24, 14931503.Google Scholar
Hermosín, M.C. & Cornejo, J. (1993) Binding mechanism of 2,4-dichlorophenoxyacetic acid by organoclays. Journal of Environmental Quality, 22, 325331.Google Scholar
Hermosín, M.C., Pavlovic, I., Ulibarri, M.A. & Cornejo, J. (1993) Trichlorophenol adsorption on layered double hydroxide: a potential sorbent. Journal of Environmental Science and Health Part A, 28, 18751888.Google Scholar
Hermosín, M.C., Pavlovic, I., Ulibarri, M.A. & Cornejo, J. (1996) Hydrotalcite as sorbent for trinitrophenol: sorption capacity and mechanism. Water Research, 30, 171177.Google Scholar
Hermosín, M.C. & Rodríguez, J.L.P. (1981) Interaction of chlordimeform with clay minerals. Clays and Clay Minerals, 29, 143152.Google Scholar
Hermosín, M.C., Ulibarri, M.A., Mansour, M. & Cornejo, J. (1992) Assaying sorbents for 2,4-dichlorophenoxyacetic acid from water. Fresenius Environmental Bulletin, 1, 472481.Google Scholar
Hernández-Moreno, M.J., Ulibarri, M.A., Rendón, J.L. & Serna, C. (1985) IR characteristics of hydrotalcitelike compounds. Physics and Chemistry of Minerals, 12, 3438.CrossRefGoogle Scholar
Houri, B., Legrouri, A., Barroug, A., Forano, C. & Besse, J.P. (1998). Use of the ion-exchange properties of layered double hydroxides for water purification. Czechoslovak Chemical Communications, 63, 732740.Google Scholar
Hundal, L.S., Thompson, M.L., Laird, D.A. & Carmo, A.M. (2001) Sorption of phenanthrene by reference smectites. Environmental Science and Technology, 35, 34563461.Google Scholar
Inacio, J., Taviot-Guého, C., Forano, C. & Besse, J.P. (2001) Adsorption of MCPA pesticide by MgAllayered double hydroxides. Applied Clay Science, 18, 255264.Google Scholar
Jaynes, W.F. & Boyd, S.A. (1991a) Clay mineral type and organic compound sorption by hexadecyltrimethy-lammonium-exchanged clays. Soil Science Society of America Journal, 55, 4348.Google Scholar
Jaynes, W.F. & Boyd, S.A. (1991b) Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water. Clays and Clay Minerals, 39, 428436.Google Scholar
Jaynes, W.F. & Vance, G.F. (1996) BTEX sorption by organo-clays: cosorptive enhancement and equivalence of interlayer complexes. Soil Science Society of America Journal, 60, 17421749.Google Scholar
Jones, T.R. (1983) The properties and uses of clays which swell in organic solvents. Clay Minerals, 18, 399410.CrossRefGoogle Scholar
Jordan, J.W. (1949) Organophilic bentonites. I. Swelling in organic liquids. Journal of Physical and Colloid Chemistry, 53, 294306.CrossRefGoogle Scholar
Kanezaki, E. (2004) Preparation of layered double hydroxides. Pp. 345373 in: Clay Surfaces: Fundamentals and Applications (Wypych, F. & Satyanarayana, K.G., editors). Elsevier, Amsterdam.CrossRefGoogle Scholar
Khan, S.U. (1980) Physicochemical processes affecting pesticides in soil. Pp. 29118 in: Pesticides in the Soil Environment (Wakeman, R.J., editor). Elsevier, Amsterdam.Google Scholar
Klumpp, E., Contreras-Ortega, C., Klahre, P., Tino, F.J., Yapar, S., Portillo, C., Stegan, S., Queirolo, F. & Schwuger, M.J. (2004) Sorption of 2,4-dichlorophenol on modified hydrotalcite. Colloids and Surfaces A, 230, 111116.Google Scholar
Koskinen, W.C. & Harper, S.S. (1990) The retention process: mechanisms. Pp. 5177 in: Pesticides in the Soil Environment: Processes, Impacts and Modeling (Cheng, H.H., editor). Soil Science Society of America, Madison, U.S.A.Google Scholar
Kovanda, F., Kovacsova, E. & Kolousek, D. (1999) Removal of anions from solution by hydrotalcite and regeneration of used sorbent in repeated calcinationrehydratation- anion exchange processes. Collection of Czechoslovak Chemical Communications, 64, 15171528.CrossRefGoogle Scholar
Lagaly, G. (1982) Layer charge heterogeneity in vermiculites. Clays and Clay Minerals, 30, 215222.Google Scholar
Lagaly, G. (1986) Smectitic clays as ionic macromolecules. Pp. 77140 in: Developments of Ionic Polymers (Wilson, A.D. & Prosser, H.J., editors). Vol. 2, Elsevier, London.Google Scholar
Lagaly, G. (2001) Pesticide-clay interactions and formulations. Applied Clay Science, 18, 205209.Google Scholar
Lagaly, G. & Beneke, K. (1991) Intercalation and exchange reactions of clay minerals and non-clay layer compounds. Colloid and Polymer Science, 269, 11981211.Google Scholar
Laird, D.A. (1996) Interactions between atrazine and smectite surfaces. Pp. 86100 in: Herbicide Metabolites in Surface Water and Ground Water. (Meyer, M.T. & Thurman, E.M., editors). ACS Symposium Series, American Chemical Society, Washington D.C. CrossRefGoogle Scholar
Lakraimi, M., Legrouri, A., Barroug, A., de Roy, A. & Besse, J.P. (2000) Preparation of a new stable hybrid material by chloride-2,4-dichlorophenoxyacetate ion exchange into the zinc-aluminium-chloride layered double hydroxide. Journal of Materials Chemistry, 10, 10071011.Google Scholar
Lee, J.J., Choi, J. & Park, J.W. (2002) Simultaneous sorption of lead and chlorobenzene by organobentonite. Chemosphere, 49, 13091315.Google Scholar
Lee, J.F., Crum, J.R. & Boyd, S.A. (1989) Enhanced retention of organic contaminants by soils exchanged with organic cations. Environmental Science and Technology, 23, 13651372.Google Scholar
Lee, J.F., Mortland, M.M., Chiou, C.T., Kile, D.E. & Boyd, S.A. (1990) Adsorption of benzene, toluene, and xylene by two tetramethylammonium-smectites having different layer charge densities. Clays and Clay Minerals, 38, 113120.CrossRefGoogle Scholar
Lemke, S.L., Grant, P.G. & Phillips, T.D. (1998) Adsorption of searalenone by organophilic montmorillonite clay. Journal of Agricultural and Food Chemistry, 46, 37893796.CrossRefGoogle Scholar
Li, F., Zhang, F.H., Evans, D.G., Forano, C. & Duan, X. (2004) Structure and thermal evolution of Mg-Al layered double hydroxide containing interlayer organic glyphosate anions. Thermochimica Acta, 424, 1523.Google Scholar
Margulies, L., Stern, T. & Rubin, B. (1994) Slow release of s-ethyl dipropylcarbamothioate from clay surfaces. Journal of Agricultural and Food Chemistry, 42, 12231227.Google Scholar
Mercier, L. & Detellier, C. (1995) Preparation, characterization and applications as heavy metals sorbents of covalently grafted thiol functionalities on the inter-lamellar surface of montmorillonite. Environmental Science and Technology, 29, 13181323.Google Scholar
Meyn, M., Beneke, K. & Lagaly, G. (1990) Anion-exchange reactions of layered double hydroxides. Inorganic Chemistry, 29, 52015207.Google Scholar
Mishael, Y.G., Undabeytia, T., Rytwo, G., Papahadjopoulos-Sternberg, B., Rubin, B. & Nir, S. (2002a). Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite. Journal of Agricultural and Food Chemistry, 50, 28562863.Google Scholar
Mishael, Y.G., Undabeytia, T., Rabinovitz, O., Rubin, B. & Nir, S. (2002b). Slow release formulations of sulfometuron incorporated in micelles adsorbed on montmorillonite. Journal of Agricultural and Food Chemistry, 50, 28642869.Google Scholar
Miyata, S. (1975) The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties. I. The systems Mg2+Al3+-NO3 , Mg2+Al3+-Cl, Mg2+Al3+-ClO4 , Ni2+Al3+-Cl and Zn2+Al3+-Cl . Clays and Clay Minerals, 23, 369375.Google Scholar
Miyata, S. (1980) Physicochemical properties of synthetic hydrotalcites in relation to composition. Clays and Clay Minerals, 28, 5056.Google Scholar
Miyata, S. (1983) Anion-exchange properties of hydrotalcite- like compounds. Clays and Clay Minerals, 31, 311319.Google Scholar
Moronta, A. (2004) Catalytic and adsorption properties of modified clay surfaces. Pp. 321344 in: Clay Surfaces: Fundamentals and Applications (Wypych, F. & Satyanarayana, K.G., editors). Elsevier, Amsterdam.Google Scholar
Mortland, M.M. (1970) Clay-organic interactions. Advances in Agronomy, 23, 75117.Google Scholar
Mortland, M.M. & Raman, K.V. (1968) Surface acidity of smectites in relation to hydration, exchangeable cation, and structure. Clays and Clay Minerals, 16, 393398.Google Scholar
Mortland, M.M., Shaobai, S. & Boyd, S.A. (1986) Clayorganic complexes as adsorbents for phenol and chlorophenols. Clays and Clay Minerals, 34, 581585.Google Scholar
Nir, S., Undabeytia, T., Yaron-Marcovich, D., El-Nahhal, Y., Polubesova, T., Serban, C., Rytwo, G., Lagaly, G. & Rubin, B. (2000) Optimization of adsorption of hydrophobic herbicides on montmorillonite preadsorbed by monovalent organic cations: interaction between phenyl rings. Environmental Science and Technology, 34, 12691274.Google Scholar
Pavan, P.C., Crepaldi, E.L., Gomes, G.A. & Valim, J.B. (1999) Adsorption of sodium dodecylsulfate on a hydrotalcite-like compound. Effect of temperature, pH and ionic strength. Colloids and Surfaces A, 154, 399410.Google Scholar
Pavlovic, I., Barriga, C., Hermosín, M.C., Cornejo, J. & Ulibarri, M.A. (2005) Adsorption of acidic pesticides 2,4-D, Clopyralid and Picloram on calcined hydrotalcite. Applied Clay Science, 30, 125133.Google Scholar
Pavlovic, I., Ulibarri, M.A., Hermosín, M.C. & Cornejo, J. (1996) Pesticide adsorption on organo-hydrotalcites. Pp. 4244 in: Advances in Clay Minerals (Ortega-Huertas, M., López-Galindo, A. & Palomo-Delgado, I., editors). Universidad de Granada, Granada, Spain.Google Scholar
Pavlovic, I., Ulibarri, M.A., Hermosín, M.C. & Cornejo, J. (1997) Sorption of an anionic surfactant from water by a calcined hydrotalcite-like sorbent. Fresenius Environmental Bulletin, 6, 266271.Google Scholar
Pernyeszi, T., Kasteel, R., Witthuhn, B., Klahre, P., Vereecken, H. & Klumpp, E. (2006) Organoclays for soil remediation: adsorption of 2,4-dichlorophenol on organoclay/aquifer material mixtures studied under static and flow conditions. Applied Clay Science, 32, 179189.Google Scholar
Polubesova, T., Nir, S., Rabinovitz, O., Borisover, M. & Rubin, B. (2003) Sulfentrazone adsorbed on micellemontmorillonite complexes for slow release in soil. Journal of Agricultural and Food Chemistry, 51, 34103414.Google Scholar
Ragavan, A., Khan, A. & O’Hare, D. (2006) Selective intercalation of chlorophenoxyacetates into the layered double hydroxide [LiAl2(OH)6]Cl·xH2O. Journal of Materials Chemistry, 16, 41554159.Google Scholar
Reichle, W.T. (1986) Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics, 22, 135141.CrossRefGoogle Scholar
Rives, V. (2001) Layered Double Hydroxides: Present and Future. Nova Science Publishers Inc., New York.Google Scholar
Rives, V. & Ulibarri, M.A. (1999) Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coordination Chemistry Reviews, 181, 61120.Google Scholar
Roberts, M.G., Li, H., Teppen, J. & Boyd, S.A. (2006) Sorption of nitroaromatics by ammonium- and organic ammonium-exchanged smectite: shifts from adsorption/complexation to a partition-dominated processes. Clays and Clay Minerals, 54, 426434.Google Scholar
Rodríguez-Cruz, M.S., Sanchez-Martín, M.J., Andrades, M.S., Sánchez-Camazano, M. (2007) Modification of clay barriers with a cationic surfactant to improve the retention of pesticides in soils. Journal of Hazardous Materials Part B, 319, 363372.Google Scholar
Rytwo, G., Nir, S. & Margulies, L. (1995) Interactions of monovalent organic cations with montmorillonite: adsorption studies and model calculations. Soil Science Society of America Journal, 59, 554564.Google Scholar
Rytwo, G., Tavasi, M., Afuta, S. & Nir, S. (2004) Adsorption of difenzoquat on montmorillonite: model calculations and increase in hydrophobicity. Applied Clay Science, 24, 149157.CrossRefGoogle Scholar
Sánchez-Martín, M.J., Rodríguez-Cruz, M.S., Andrades, M.S. & Sánchez-Camazano, M.S. (2006) Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: influence of clay type and pesticide hydrophobicity. Applied Clay Science, 31, 216228.Google Scholar
Sánchez-Martín, M.J., Villa, M.V. & Sánchez-Camazano, M. (1999) Glyphosate-hydrotalcite interaction as influenced by pH. Clays and Clay Minerals, 47, 777783.Google Scholar
Sato, T., Kato, K., Endo, T. & Shimada, M. (1986) Preparation and chemical properties of magnesium aluminium oxide solid solutions. Reactivity of Solids, 2, 253-260.Google Scholar
Serna, C.J., Rendón, J.L. & Iglesias, J. (1982) Crystal-chemical study of layered [Al2Li(OH)6]+X·nH2O. Clays and Clay Minerals, 30, 180184.CrossRefGoogle Scholar
Serratosa, J.M., Johns, W.D. & Shimoyama, A. (1970) I. R. study of alkyl-ammonium vermiculite complexes. Clays and Clay Minerals, 18, 107113.Google Scholar
Sheng, G., Xu, S. & Boyd, S.A. (1999) A dual function organoclay sorbent for lead and chlorobenzene. Soil Science Society of America Journal, 63, 7378.Google Scholar
Smith, J.A., Jaffé, P.R. & Chiou, C.T. (1990) Effect often quaternary ammonium cations on tetrachloro-methane sorption to clay from water. Environmental Science and Technology, 24, 11671172.Google Scholar
Ulibarri, M.A., Pavlovic, I., Hermosín, M.C. & Cornejo, J. (1995) Hydrotalcite-like compounds as potential sorbents of phenols from water. Applied Clay Science, 10, 131145.Google Scholar
Undabeytia, T., Nir, S. & Rubin, B. (2000) Organo-clay formulations of the hydrophobic herbicide norflurazon yield reduced leaching. Journal of Agricultural and Food Chemistry, 48, 47674779.Google Scholar
Villa, M.V., Sánchez-Martín, M.J. & Sánchez-Camazano, M. (1999) Hydrotalcites and organohydrotalcites as sorbents for removing pesticides from water. Journal of Environmental Science and Health Part B, 34, 509525.Google Scholar
Walker, G.F. (1967) Interactions of n-alkylammonium ions with mica-type layer lattices. Clay Minerals, 7, 129143.Google Scholar
Wang, B., Zhang, H., Evans, D. & Duan, X. (2005) Surface modification of layered double hydroxides and incorporation of hydrophobic organic compounds. Materials Chemistry and Physics, 92, 190196.CrossRefGoogle Scholar
Weber, J.B., Perry, P.W. & Upchurch, R.P. (1965) The influence of temperature and time on the adsorption of paraquat, diquat, 2,4-D and prometone by clays, charcoal, and an anion-exchange resin. Soil Science Society of America Proceedings, 29, 678688.Google Scholar
Weber, J.B. & Weed, S.B. (1968) Adsorption and desorption of diquat, paraquat and prometone by montmorillonitic and kaolinitic clay minerals. Soil Science Society of America Proceedings, 32, 485487.Google Scholar
Wu, J., Harwell, J.H. & O’Rear, E.A. (1987) Twodimensional reaction solvents: surfactant bilayers in the formulation of ultrathin films. Langmuir, 3, 531537.Google Scholar
Xi, Y., Frost, R.L. & He, H. (2007) Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides. Journal of Colloid and Interface Science, 305, 150158.Google Scholar
Xu, S. & Boyd, S.A. (1995) Cationic surfactant sorption to a vermiculitic subsoil via hydrophobic bonding. Environmental Science and Technology, 29, 312320.Google Scholar
Xu, S., Sheng, G. & Boyd, S.A. (1997) Use of organoclays in pollution abatement. Advances in Agronomy, 59, 2562.Google Scholar
You, Y., Zhao, H. & Vance, G.F. (2002a) Adsorption of Dicamba (3,6-dichloro-2-metoxy benzoic acid) in aqueous solution by calcined-layered double hydroxide. Applied Clay Science, 21, 217226.Google Scholar
You, Y., Zhao, H. & Vance, G.F. (2002b) Surfactant enhanced adsorption of organic compounds by layered double hydroxides. Colloids and Surfaces A, 205, 161172.Google Scholar
Zhang, X., Zhang, H., Wei, M., Evans, D.G. & Duan, X. (2004) Release properties of glyphosate from a supramolecular glyphosate intercalated MgAl-LDH. Chemical Journal of Chinese University, 25, 18691874.Google Scholar
Zhang, Z.Z., Sparks, D.L. & Scrivner, N.C. (1993) Sorption and desorption of quaternary amine cations on clays. Environmental Science and Technology, 27, 16251631.Google Scholar
Zhao, H., Jaynes, W.F. & Vance, G.F. (1996) Sorption of the ionisable organic compound, dicamba (3,6- dichloro-2-methoxy benzoic acid), by organoclays. Chemosphere, 33, 20892100.Google Scholar
Zheng, W., Papiernik, S.K., Guo, M.X., Dungan, R.S. & Yates, S.R. (2005) Construction of a reactive surface barrier to reduce fumigant 1,3-dichloropropene emissions. Environmental Toxicology and Chemistry, 24, 18671874.Google Scholar