Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-qcsxw Total loading time: 0.73 Render date: 2022-08-08T05:42:52.168Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Interaction of titanium with smectite within the scope of a spent fuel repository: A spectroscopic approach

Published online by Cambridge University Press:  02 January 2018

Daniel Grolimund*
Affiliation:
Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
Paul Wersin
Affiliation:
University of Bern, CH-3012 Bern, Switzerland
Jocelyne Brendlé
Affiliation:
Université de Haute-Alsace, F-68093 Mulhouse, France
Joffrey Huve
Affiliation:
Université de Haute-Alsace, F-68093 Mulhouse, France
Leena Kiviranta
Affiliation:
B+Tech Oy, FIN-00420 Helsinki, Finland
Margit Snellman
Affiliation:
Saanio & Riekkola Oy, FIN-00420 Helsinki, Finland
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Swedish and Finnish nuclear waste repository design, KBS-3H, foresees horizontal emplacement of copper canisters-bentonite modules surrounded by a titanium shell. The interaction of titanium with bentonite was studied here using a combination of wet chemistry and a spectroscopic approach to evaluate the potential impact of Ti corrosion on the clay. For natural analogue clays with high Ti contents, spectroscopic investigations showed that titanium occurs as crystalline TiO2. In contrast, the Ti in the MX-80 bentonite occurs in the clay structure, presumably in the octahedral sheet. Hydrothermal tests conducted at 200°C using synthetic montmorillonite showed little if any change in the montmorillonite structure at near-neutral and acidic conditions. Under alkaline conditions, limited alteration was observed, including the formation of trioctahedral clay minerals and zeolite. These changes, however, occurred independently of the addition of Ti. In the batch tests conducted at 80°C, Ti did not occur as separate TiO2 particles. The comparison of experimental data with spectroscopic simulations provides sound evidence that Ti was incorporated in a neoformed phyllosilicate structure.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2016 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

References

Azumi, K. & Seo, M. (2003) Corrosion behavior of titanium-clad carbon steel in weakly alkaline solu-tions. Corrosion Science, 45, 413426.10.1016/S0010-938X(02)00124-5CrossRefGoogle Scholar
Azumi, K., Yasui, N. & Seo, M. (2000) Changes in the properties of anodic oxide films formed on titanium during long-term immersion in deaerated neutral solutions. Corrosion Science, 42, 885896.10.1016/S0010-938X(99)00096-7CrossRefGoogle Scholar
Becerro, A.I., Mantovani, M. & Escudero, A. (2009) Mineralogical stability of phyllosilicates in hyperalka-line fluids: Influence of layer nature, octahedral occupation and presence of tetrahedral Al. American Mineralogist, 94, 11871197.10.2138/am.2009.3164CrossRefGoogle Scholar
Behrens, P., Felsche, J., Vetter, S., Schulzekloff, G., Jaeger, N.I. & Niemann, W. (1991) A XANES and EXAFS investigation of titanium silicalite. Journal of the Chemical Society-Chemical Communications, 678-680.Google Scholar
Bieseki, L., Treichel, H., Araujo, A.S. & Castellã Pergher, S.B. (2013) Porous materials obtained by acid treatment processing followed by pillaring of montmorillonite clays. Applied Clay Science, 85, 4652.10.1016/j.clay.2013.08.044CrossRefGoogle Scholar
Bradbury, M.H. & Baeyens, B. (2009) Sorption modelling on illite part I: Titration measurements and the sorption of Ni, Co, Eu and Sn. Geochimica et Cosmochimica Acta, 73, 9901003.10.1016/j.gca.2008.11.017CrossRefGoogle Scholar
Charlet, L. & Manceau, A. (1994) Evidence for the neoformation of clays upon sorption of Co(II) and Ni (II) on silicates. Geochimica et Cosmochimica Acta, 58, 25772582.10.1016/0016-7037(94)90034-5CrossRefGoogle Scholar
Farges, F. (1996) Coordination of Ti in crystalline and glassy fresnoites: A high-resolution XANES spectroscopy study at the Ti K-edge. Journal of Non-Crystalline Solids, 204, 5364.10.1016/0022-3093(96)00392-4CrossRefGoogle Scholar
Farges, F., Brown, G.E. & Rehr, J.J. (1997) Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment. Physical Review B, 56, 18091819.10.1103/PhysRevB.56.1809CrossRefGoogle Scholar
Fernandez-Garcia, M., Belver, C., Hanson, J.C., Wang, X. & Rodriguez, J.A. (2007) Anatase-TiO2 nanomaterials: Analysis of key parameters controlling crystallization. Journal of the American Chemical Society, 129, 1360413612.10.1021/ja074064mCrossRefGoogle ScholarPubMed
Finney, W.F., Wilson, E., Callender, A., Morris, M.D. & Beck, L.W. (2006) Reexamination of hexafluorosilicate hydrolysis by 19F NMR and pH measurement. Environmental Science & Technology, 40, 25722577.10.1021/es052295sCrossRefGoogle ScholarPubMed
Flank, A.M., Lagarde, P., Itie, I.P., Polian, A. & Hearne, G.R. (2009) Pressure induced amorphisation and the amorphous—amorphous transition in nano-TiO(2): An X-ray absorption spectroscopy study. Pp. 20-24: in Synchrotron Radiation in Materials Science (R.M. Paniago, editor). American Institute of Physics, New York.Google Scholar
Gabis, V. (1958) Etude preliminaire des argiles Oligocenes du Puyen-Velay (Haute-Loire. Bulletin de la Société française de Minéralogie et de Cristallographie, 81, 183185.Google Scholar
Glaus, M.A., Frick, S., Rosse, R. & Van Loon, L.R. (2010) Comparative study of tracer diffusion of HTO, 22Na+ and 36Cr in compacted kaolinite, illite and montmor-illonite. Geochimica et Cosmochimica Acta, 74, 19992010.10.1016/j.gca.2010.01.010CrossRefGoogle Scholar
Jiang, N., Su, D. & Spence, J.C.H. (2007) Determination of Ti coordination from pre-edge peaks in Ti K-edge XANES. Physical Review B, 76, 214-117.Google Scholar
Karnland, O., Olsson, S. & Nilsson, U. (2006) Mineralogy and sealing properties of various bentonites and smectite-rich clay materials. SKB TR-06-30, Svensk Kärnbränslehantering AB (SKB), Stockholm.Google Scholar
King, F. (2008) Corrosion of carbon steel under anaerobic conditions in a repository for SF and HLW in Opalinus Clay. NAGRA Technical Report NTB 08-12, Wettingen, Switzerland.Google Scholar
Komadel, P., Schmidt, D., Madejová, J. & Blahoslav, C. (1990) Alteration of smectites by treatments with hydrochloric acid and sodium carbonate solutions. Applied Clay Science, 5, 113122.10.1016/0169-1317(90)90017-JCrossRefGoogle Scholar
Konta, J. (1986) Textural variation and composition of bentonite derived from basaltic ash. Clays and Clay Minerals, 34, 257265.10.1346/CCMN.1986.0340305CrossRefGoogle Scholar
Mattsson, H. & Olefjord, I. (1984) General corrosion of Ti in hot water and water saturated bentonite clay. Report TR84-19 for SKB (available at http://skb.se/upload/publications/pdf/TR84-19webb.pdf). Google Scholar
Mattsson, H. & Olefjord, I. (1990) Analysis of oxide formed on Ti during exposure in bentonite clay. 1. The oxide growth. Werkstoffe und Korrosion — Materials and Corrosion, 41, 383390.10.1002/maco.19900410703CrossRefGoogle Scholar
Mattsson, H., Li, C.H. & Olefjord, I. (1990) Analysis of oxide formed on Ti during exposure in bentonite clay. 2. The structure of the oxide. Werkstoffe und Korrosion — Materials and Corrosion, 41, 578584.10.1002/maco.19900411006CrossRefGoogle Scholar
Okada, K., Arimitsu, N., Kameshima, Y., Nakajima, A. & Mackenzie, K.J.D. (2006) Solid acidity of 2:1 type clay minerals activated by selective leaching. Applied Clay Science, 31, 185193.10.1016/j.clay.2005.10.014CrossRefGoogle Scholar
Posiva (2012) Description of KBS-3H design variant. POSIVA 2012-50, 126 pp. ISBN 978-951-652-232-9, Posiva Oy, Eurajoki, Finland.Google Scholar
Posiva (2013) YJH-2012 Nuclear waste management at Olkiluoto and Loviisa power plants: Review of current status and future plans for 2013-2015. Posiva Oy, YJH-2012, Eurajoki, Finland, 363 pp.Google Scholar
Ravel, B. & Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537541.10.1107/S0909049505012719CrossRefGoogle ScholarPubMed
Rehr, J.J. & Albers, R.C. (2000) Theoretical approaches to X-ray absorption fine structure. Reviews of Modern Physics, 72, 621654.10.1103/RevModPhys.72.621CrossRefGoogle Scholar
Rehr, J.J., Albers, R.C. & Zabinsky, S.I. (1992) High-order multiple-scattering calculations of X-ray-absorption fine-structure. Physical Review Letters, 69, 33973400.10.1103/PhysRevLett.69.3397CrossRefGoogle ScholarPubMed
Rehr, J.J., Kas, J.J., Prange, M.P., Sorini, A.P., Takimoto, Y. & Vila, F. (2009) Ab initio theory and calculations of X-ray spectra. Comptes Rendus Physique, 10, 548559.10.1016/j.crhy.2008.08.004CrossRefGoogle Scholar
Reinholdt, M., Miehe-Brendlé, J., Delmotte, L., Tuilier, M.H., le Dred, R., Cortes, R. & Flank, A.M. (2001) Fluorine route synthesis of montmorillonites containing Mg or Zn and characterization by XRD, thermal analysis, MAS NMR, and EXAFS spectroscopy. European Journal of Inorganic Chemistry, 2831-2841.Google Scholar
Ruiz, R., Blanco, C., Pesquera, C., Gonzalez, F., Benito, I. & Lopez, J.L. (1997) Zeolitization of a bentonite and its application to the removal of ammonium ion from waste water. Applied Clay Science, 12, 7383.10.1016/S0169-1317(96)00038-5CrossRefGoogle Scholar
Savage, D., Noy, D. & Mihara, M. (2002) Modelling the interaction of bentonite with hyperalkaline fluids. Applied Geochemistry, 17, 207223.10.1016/S0883-2927(01)00078-6CrossRefGoogle Scholar
Schutz, R.W. (2005) Corrosion of titanium and titanium alloys. Pp. 252-299. in: ASM Handbook, Vol. 13B, Corrosion: Materials (S.D. Cramer and B.S. Covino Jr., editors). ASM International (Materials Park, Ohio, USA).Google Scholar
SKB/POSIVA (2008) Horizontal deposition of canisters for spent nuclear fuel - Summary of the KBS-3H Project 2004-2007. SKB Technical Report TR-08-03. POSIVA 2008-03. Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm, Sweden and Posiva Oy, Olkiluoto, Finland.Google Scholar
SKB (2011) Long-term safety for the final repository for spent nuclear fuel at Forsmark. SKB Technical Report TR-11-01, Stockholm.Google Scholar
SKB (2012) KBS-3H Complementary Studies 2008-2010. SKB Technical Report TR-12-01. Swedish Nuclear Fuel and Waste Management Co. (SKB).Google Scholar
Svensson, D., Dueck, A., Nilsson, U., Olsson, S., Sandén, T., Lydmark, S., Jägerwall, S., Pedersen, K. & Hansen, S. (2011) Alternative buffer material. Status of the ongoing laboratory investigation of reference materials and test package 1. SKB TR-11-06, Svensk Kärnbränslehantering AB (SKB), Stockholm.Google Scholar
Techer, I., Clauer, N. & Liewig, N. (2009) Ageing effect on the mineral and chemical composition of Opalinus Clays (Mont Terri, Switzerland) after excavation and surface storage. Applied Geochemistry, 24, 20002014.10.1016/j.apgeochem.2009.07.014CrossRefGoogle Scholar
Thury, M. (2002) The characteristics of the Opalinus Clay investigated in the Mont Terri underground rock laboratory in Switzerland. Comptes Rendus Physique, 3, 923933.10.1016/S1631-0705(02)01372-5CrossRefGoogle Scholar
Thury, M. & Bossart, P. (1999) The Mont Terri rock laboratory, a new international research project in a Mesozoic shale formation, in Switzerland. Engineering Geology, 52, 347359.10.1016/S0013-7952(99)00015-0CrossRefGoogle Scholar
Waychunas, G.A. (1987) Synchrotron radiation XANES spectroscopy of Ti in minerals — effects of Ti bonding distances, Ti valence, and site geometry on absorption-edge structure. American Mineralogist, 72, 89101.Google Scholar
Weiss, C.A. Jr., Altaner, S.P. & Kirkpatrick, R.P. (1987) High spectroscopy of 2:1 layer silicates: correlations among chemical shift, structural distortions and chemical variations. American Mineralogist, 74, 203215.Google Scholar
Wersin, P. & Birgersson, M. (2014) Reactive transport modelling of iron-bentonite interaction within the KBS-3H disposal concept: The Olkiluoto site as a case study. Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, 400, 237250.Google Scholar
Wersin, P., Grolimund, D., Kumpulainen, S., Kiviranta, L., Brendlé, J. & Snellman, M. (2010) Titanium alloys as alternative material for the supercontainer shell in the KBS-3H concept. A preliminary Ti-clay interaction study. R-10-51, Svensk Kärnbränslehantering AB (SKB), Stockholm.Google Scholar
Willmott, P.R., Meister, D., Leake, S.J., Lange, M., Bergamaschi, A., Böge, M., Calvi, M., Cancellieri, C., Casati, N., Cervellino, A., Chen, Q., David, C., Flechsig, U., Gozzo, F., Henrich, B., Jäggi-Spielmann, S., Jakob, B., Kalichava, I., Karvinen, P., Krempasky, J., Lüdeke, A., Lüscher, R., Maag, S., Quitmann, C., Reinle-Schmitt, M.L., Schmidt, T., Schmitt, B., Streun, A., Vartiainen, I., Vitins, M., Wang, X. & Wullschleger, R. (2013) The Materials Science beamline upgrade at the Swiss Light Source. Journal of Synchrotron Radiation, 20, 667682.10.1107/S0909049513018475CrossRefGoogle ScholarPubMed
You have Access Open access
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Interaction of titanium with smectite within the scope of a spent fuel repository: A spectroscopic approach
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Interaction of titanium with smectite within the scope of a spent fuel repository: A spectroscopic approach
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Interaction of titanium with smectite within the scope of a spent fuel repository: A spectroscopic approach
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *