Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T01:26:51.577Z Has data issue: false hasContentIssue false

Influence of clay minerals and exchangeable cations on the formation of humic-like substances (melanoidins) from D-glucose and L-tyrosine

Published online by Cambridge University Press:  09 July 2018

P. Arfaioli
Affiliation:
Dipartimento Scienza del Suolo e Nutrizione della Pianta, Università di Firenze, Piazzale Cascine 28, 50144 Firenze
O. L. Pantani
Affiliation:
Dipartimento Scienza del Suolo e Nutrizione della Pianta, Università di Firenze, Piazzale Cascine 28, 50144 Firenze
M. Bosetto
Affiliation:
Dipartimento Scienza del Suolo e Nutrizione della Pianta, Università di Firenze, Piazzale Cascine 28, 50144 Firenze
G. G. Ristori
Affiliation:
Istituto per la Genesi e l'Ecologia del Suolo (IGES), CNR Firenze, Piazzale Cascine 28, 50144 Firenze, Italy

Abstract

The ability to produce humic-like polymeric compounds, with D-glucose and L-tyrosine as starting materials, was evaluated in different mineral systems: (1) Ca-, Al- and Cu(II)-saturated montmorillonite; (2) Ca-, Al- and Cu(II)-saturated kaolinite; (3) quartz in the presence of two different amounts of the same cations (according to the cation exchange capacity of the clays); and (4) untreated quartz (as control). All systems proved to be effective in the formation of humic-like compounds, particularly quartz, in the presence of cations. The effectiveness in promoting humification reactions was strictly related to the amounts of added cations. In the reaction conditions considered, the humification appears to be due more to the cations than to the type of clay minerals. The clayey systems synthesized more complex (aromatic) substances than the quartz ones.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arfaioli, P., Ristori, G.G., Bosetto, M. & Fusi, P. (1997) Humic-like compounds formed from L-tryptophan and D-glucose in the presence of Cu(II). Chemosphere. 35, 575584.Google Scholar
Benzing-Purdie, L. & Ripmeester, J.A. (1983) Melanoidins and soil organic matter: evidence of strong similarities revealed by 13C CP-MAS NMR. Soil Sci. Soc. Am. J. 47, 5661.CrossRefGoogle Scholar
Benzing-Purdie, L., Ripmeester, J.A. & Preston CM. (1983) Elucidation of the nitrogen forms in melanoidins and humic acid by nitrogen-15 cross polarization-magic angle spinning nuclear magnetic resonance spectroscopy. J. Agric. Food Chem. 31, 913915.CrossRefGoogle Scholar
Boon, J.J., De Leeuw, J.W., Rubinsztain, Y., Aizenshtat, Z., Ioselis, P. & Ikan, R. (1984) Thermal evaluation of some model melanoidins by Curie-point pyrolysismass spectrometry and gas chromatography-mass spectrometry. Org. Geochem. 6, 805811.Google Scholar
Bosetto, M., Arfaioli, P., Ristori, G.G & Fusi, P. (1994) Influence of some homoionic clays on the formation of melanoidinic compounds from glucose and tryptophan. Presenilis Pnvir. Bull. 3, 371376.Google Scholar
Bosetto, M., Arfaioli, P., Ristori, G.G. & Fusi, P. (1995) Formation of melanin-type compounds from Ltryptophan on Ca- and Al-saturated clays. Presenilis Pnvir. Bull. 4, 369374.Google Scholar
Bosetto, M., Arfaioli, P., Pantani, O.L., & Ristori, G.G. (1997) Study on the humic-like compounds formed from L-tyrosine on homoionic clays. Clay Miner. 32, 341349.CrossRefGoogle Scholar
Boyd, S.A. & Mortland, M.M. (1985) Manipulating the activity of immobilized enzymes with different organo-smectite complexes. Pxperientia. 1564-1566.Google Scholar
Boyd, S.A. & Mortland, M.M. (1986) Selective effects of smectite-organic complexes on the activity of immobilized enzymes. J. Mol. Cat. 34, 18.Google Scholar
Cairns Smith, A.G. (1966) The origin of life and the nature of the primitive gene. J. Theoretical Biol. 10, 5388.CrossRefGoogle Scholar
Cairns Smith, A.G. (1974) Genes made of clay. New Scientist. 61, 274276.Google Scholar
Cairns Smith, A.G. (1985) The first organism. Sci. Amer. 252, 7482.Google Scholar
Chen, Y. , Senesi, N. & Schnitzer, M. (1977) Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 41, 352358.Google Scholar
Ciavatta, C. & Govi, M. (1993) Use of insoluble polyvinylpirrolidone and isoelectric focusing in the study of humic substances in soils and organic wastes. J. Chromatogr. 643, 261270.CrossRefGoogle Scholar
Ciavatta, C., Govi, M., Vittori Antiseri, L. & Sequi, P. (1991) Determination of organic carbon in aqueous extracts of soils and fertilizers. Soil Sci. Plant Anal. 22, 795807.Google Scholar
Friebele, E., Shimoyama, A. & Ponnamperuma, C. (1980) Adsorption of protein and non-protein amino acids on clay mineral: a possible role of selection in chemical evolution. J. Mol. Pvol. 126, 269278.CrossRefGoogle Scholar
Hedges, J.I. (1978) The formation and clay mineral reactions of melanoidins. Geochim. Cosmochim. Acta. 42, 6976.CrossRefGoogle Scholar
Ikan, R. (1996) The Maillard Reaction. pp. 214. John Wiley & Sons, Chichester.Google Scholar
Ikan, R., Dorsey, T. & Kaplan, I.R. (1990) Characterization of natural and synthetic humic substances (melanoidins) by stable carbon and nitrogen isotope measurements and elemental composition. Anal. Chim. Acta. 232, 1118.Google Scholar
Ikan, R., Ioselis, P., Rubinsztain, Y., Aizenshtat, Z., Miloslavsky, I., Yariv, S., Pugmire, R., Anderson, L.L., Woolfenden, W.R., Kaplan, I.R, Dorsey, T., Peters, K.E., Boon, J.J., de Leeuw, J.W., Ishiwatari R, Morinaga, S., Yamamoto, S., Macihara, T., Muller-Vonmoos, M. & Rub, A. (1992) Chemical, isotopic, spectroscopic and geochemical aspects of natural and syntethic humic substances. Sci. Total Pnviron. 117/118, 112.Google Scholar
Ikan, R., Rubinsztain, Y., Ioselis, P., Aizenshtat, Z., Pugmire R, Anderson, L.L. & Woolfenden, W.R. (1986) Carbon-13 cross polarized magic angle samples spinning nuclear magnetic resonance of melanoidins. Org. Geochem. 9, 199212.CrossRefGoogle Scholar
Maillard, L.C. (1912a) Formation d'humus et de combustibles minéraux sans intervention de l'oxygène atmosphérique, des microrganismes, des hautes températures ou de fortes pressions. Comptes Rendus Hebd. Séances Acad. Sci. 155, 15541556.Google Scholar
Maillard, L.C. (1912b) Action des acides aminés sur les sucres: Formation des melanoidines par voie méthodique. Comptes Rendus Hebd. Séances Acad. Sci. 154, 6668.Google Scholar
Maillard, L.C. (1916) Synthèse des matières humiques par action des acides aminés sur les sucres réducteurs. Ann. Chim. 9, 258317.Google Scholar
Mortland, M.M. & Halloran, L.J. (1976) Polymerization of aromatic molecules on smectite. Soil Sci. Soc. Am. J. 40, 367370.CrossRefGoogle Scholar
Naidja, A. & Siffert, B. (1989) Glutamic acid decarboxylation of isocitric acid in the presence of montmorillonite. Clay Miner. 24, 649661.CrossRefGoogle Scholar
Naidja, A. & Siffert, B. (1990) Oxidative deamination in the presence of montmorillonite. Clay Miner. 25, 2737.CrossRefGoogle Scholar
Rubinsztain, Y., Ioselis, P., Ikan, R. & Aizenshtat, Z. (1984) Investigations on the structural units of melanoidins. Org. Geochem. 6, 797804.Google Scholar
Rubinsztain, Y., Yariv, S., Ioselis, P., Aizenshtat, Z. & Ikan R (1986) Characterization of melanoidins by IR spectroscopy - I. Galactose-glycine melanoidins. Org. Geochem. 9, 117125.Google Scholar
Sawhney, B.L., Kozloski, R.K., Isaacson, P.J. & Gent, M.P.N. (1984) Polymerization of 2,6-dimethylphenol on smectite surfaces. Clays Clay Miner. 32, 108114.Google Scholar
Siffert, B. & Naidja, A. (1987) Stereoselectivity of montmorillonite in the adsorption and deamination of some amino acids. Clay Miner. 27, 109118. Stevenson, F.J. (1994a) Extraction, fractionation, and general chemical composition of soil organic matter. Pp. 26-31 in: Humus Chemistry. John Wiley & Sons, New York.CrossRefGoogle Scholar
Stevenson, F.J. (1994b) Biochemistry of the formation of humic substances. Pp. 206-211 in: Humus Chemistry. John Wiley & Sons, New York.Google Scholar
Stevenson, F.J. (1994c) Spectroscopic approaches. Pp. 303-307 in: Humus Chemistry. John Wiley & Sons, New York.Google Scholar
Taguchi, K. & Sampei, Y. (1986) The formation and clay mineral and CaC03 association reactions of melanoidins. Org. Geochem. 10, 10811089.Google Scholar
Wang, M.C. (1991) Catalysis of nontronite in phenols and glycine transformations. Clays Clay Miner. 39, 202210.Google Scholar
Wang, M.C, Chen, J.H. & Hsiang, W.M. (1985) Catalytic synthesis of humic acids containing various amino acids and dipeptides. Soil Sci. 140, 310.Google Scholar
Wang, M.C. & Huang, P.M. (1987) Catalytic polymerization of hydroquinone by nontronite. Can. J. Soil Sci. 67, 867875.Google Scholar
Watanabe, A. & Kuwatsuka, S. (1992) Chemical characteristics of soil fulvic acids fractionated using polyvinyl pirrolidone (PVP). Soil Sci. Plant Nutr. 38, 3141.Google Scholar
Zubkova, T.A. (1989) Catalytic functions of clay minerals in soils. Pochvovedenie. 3, 2131.Google Scholar