Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-10T17:49:56.406Z Has data issue: false hasContentIssue false

Experimental investigation of the effect of high-pH solutions on the Opalinus Shale and the Hammerschmiede Smectite

Published online by Cambridge University Press:  09 July 2018

H. Taubald
Affiliation:
Universität Tübingen, Institut für Mineralogie, Petrologieund Geochemie, Lehrstuhl fuer Geochemie, Wilhelmstr.56, D-72074 Tübingen
A. Bauer*
Affiliation:
Forschungszentum Karlsruhe, Institut für Nukleare Entsorgungstechnik, PO Box 3640, D-76021 Karlsruhe, Germany
T. Schäfer
Affiliation:
Forschungszentum Karlsruhe, Institut für Nukleare Entsorgungstechnik, PO Box 3640, D-76021 Karlsruhe, Germany
H. Geckeis
Affiliation:
Forschungszentum Karlsruhe, Institut für Nukleare Entsorgungstechnik, PO Box 3640, D-76021 Karlsruhe, Germany
M. Satir
Affiliation:
Universität Tübingen, Institut für Mineralogie, Petrologieund Geochemie, Lehrstuhl fuer Geochemie, Wilhelmstr.56, D-72074 Tübingen
J . I . Kim
Affiliation:
Forschungszentum Karlsruhe, Institut für Nukleare Entsorgungstechnik, PO Box 3640, D-76021 Karlsruhe, Germany
*

Abstract

The alteration and transformation behaviour of the Tertiary Hammerschmiede Smectite and the Jurassic Opalinus Shale in an alkaline solution was studied in column experiments. The Hammerschmiede Smectite is proposed as potential backfill material and the Opalinus Shale as host rock for the Swiss low-level nuclear waste storage site. Over a period of 18 months, the evolution of permeability, pH and solution concentrations were measured. After the experiment, the columns were cut into pieces to study the mineralogical and the chemical evolution of the clays. X-ray diffraction (XRD) revealed no significant appearance or disappearance of diffraction peaks at the end of the experiments. The scanning electron micrographs of the clays revealed that both clays exhibited a precipitation zone, which extends from 0 to 2 cm below the infiltration surface. Both clays showed significant differences in the evolution of pH and hydraulic conductivity. The solution front crossed the Opalinus Shale column entirely after only 11 weeks and the initial values for K+ and Na+ were conserved in the solution. For both clays, the salt concentrations in the percolating fluids mirror the evolution of pH.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, M., Mäder, U. & Waber, N. (1998) Experiment vs modelling: Diffusive and advective interaction of high-pH solution in argillaceous rock at 35°C. Abstracts of the Goldschmidt Conference 1998. Mineral. Mag. 62A, 15 – 16.Google Scholar
Andersson, K., Allard, B., Bengtsson, M. & Magnusson, B. (1989) Chemical composition of cement pore waters. Cement Concrete Res. 19, 327 – 332.Google Scholar
Atkinson, A. (1985) The Time Dependence of the pH within a Repository for Radioactive Waste Disposal. AERE R11 777, HMSO, London.Google Scholar
Bath, A. H., Cristofi, N., Neal, C., Philp, J.C., McKinley, I.G. & Berner, U. (1987) Trace Element and Microbial Studies of Alkaline Groundwater in Oman, Arabian Gulf: A Natural Analogue of Cement-Pore Waters [rep.]. Nagra NTB, 90-12, Baden, Switzerland.Google Scholar
Bauer, A. (1997) Etude du comportement des smectites et de la kaolinite dans des solutions potassiques (0.1–4 m). Thèse de 3ème cycle, Univ. Paris 6.Google Scholar
Bauer, A. & Berger, G. (1998) Kaolinite and smecite dissolution rate in high molar KOH solutions at 35 and 80°C. Appl. Geochem. 13, 905 – 916.Google Scholar
Bauer, A. & Velde, B. (1999) Smectite transformation in KOH solutions. Clay Miner. 34, 261 – 276.Google Scholar
Bauer, A., Velde, B. & Berger, G. (1998) Kaolinite transformation in high molar KOH solutions. Appl. Geochem. 13, 619 – 629.Google Scholar
Berner, U. (1990) A Thermodynamic Description of the Evolution of Porewater Chemistry and Uranium Speciation during the Degradation of Cement [rep.]. Nagra NTB, 90-12, Baden, Switzerland.Google Scholar
Brindley, G.W. (1980) Quantitative X-ray mineral analysis of clays. Pp. 411 – 438 in. Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.Google Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938) Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 – 319.Google Scholar
Carroll, S.A. & Walther, J.A. (1990) Kaolinite dissolution at 258, 608 and 80°C. Am. J. Sci. 290, 797 – 810.Google Scholar
Carroll-Webb, S. & Walther, J.V. (1988) A surface complex reaction model for the pH-dependence of corundum and kaolinite dissolution. Geochim. Cosmochim. Acta, 52, 2609 – 2623.Google Scholar
Chermark, J.A. (1992) Low temperature experimental investigation of the effect of high pH NaOH solutions on the Opalinus Shale, Switzerland. Clays Clay Miner. 40, 650 – 658.Google Scholar
Chermark, J.A. (1993) Low temperature investigation on the effect of high pH KOH on the Opalinius Shale Switzerland. Clays Clay Miner. 41, 365 – 372.Google Scholar
Day, P.R. (1965) Particle fractionation and particle size analysis. Pp. 545 – 567 in: Methods of Soil Analysis (Black, C.A., editor ). American Society of Agronomy, Inc.Google Scholar
DIN 18127, Proctorversuch, April 1976, Beuth Verlag.Google Scholar
DIN18130 , Teil1 : Bestimmungdes Wasserdurchlässigkeitsbeiwerts, November 1989, Beuth Verlag.Google Scholar
Eberl, D.D. & Hower, J. (1977) The hydrothermal transformation of sodium and potassium smectite into mixed layer clays. Clays Clay Miner. 25, 215 – 227.CrossRefGoogle Scholar
Eberl, D.D., Velde, B. & McCormick, T. (1993) Synthesis of illite-smectite from smectite at earth surface temperatures and high pH. Clay Miner. 28, 49 – 60.Google Scholar
Ganor, J., Mogollon, J.L. & Lasaga, A.C. (1995) The effect of pH on kaolinite dissolution rates and on activation energy. Geochim. Cosmochim. Acta, 59, 1037 – 1052.Google Scholar
Haworth, A., Sharland, S.M. & Tweed, C.J. (1989) Modelling of the degradation of cement in a nuclear waste repository. Proc. Mat. Res. Soc. Symp. 127, 447 – 454.Google Scholar
Huang, W.J. (1993) The formation of illitic clays from kaolinite in KOH solution from 225°C to 350°C. Clays Clay Miner. 6, 645 – 654.Google Scholar
Jeffries, N.L., Tweed, C.J. & Wisbey, S.J. (1988) The effects of changes in pH in a clay surrounding a cementitious repository. Mat. Res. Soc. Symp. Proc. 112, 43 – 52.Google Scholar
Karlson, L.G., Höglund, L.O. & Pers, K. (1986) Nuclide Release from the Near-Field of a L/ILW Repository [rep.]. Narga NTB, 85-33, Baden, Switzerland.Google Scholar
Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): A convenient way to study clay minerals. Clays Clay Miner. 45, 132 – 146.Google Scholar
Lanson, B. & Besson, G. (1992) Characterisation of the end of smectite to illite transformation: decomposition of X-ray patterns. Clays Clay Miner. 40, 40– 52.Google Scholar
Lanson, B. & Velde, B. (1992) Decomposition of X-ray diffraction patterns; A convenient way to describe complex diagenetic evolutions. Clays Clay Miner. 40, 629 – 643.Google Scholar
Lunden, I. & Andersson, K. (1989) Modelling the mixing of cement pore water and groundwater using the PHREEQE code. Mat. Res. Soc. Symp. Proc. 127, 949 – 956.Google Scholar
May, H.M., Kinniburgh, D.G., Melmke, P.A. & Jackson, M.L. (1986) Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals : Kaolinite and smectites. Geochim. Cosmochim. Acta, 50, 1667 – 1677.Google Scholar
Mohnot, S.M., Bae, J.H. & Foley, W.L. (1987) A study of alkali/mineral reactions. SPE Reservoir Engineering, Nov. 1987, 653 – 663.Google Scholar
Moore, M.D. & Reynolds, R.C., Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press.Google Scholar
Nagra Interner Bericht 95-70 (1995) Column Experiments: Results of experiments and modelling (unpublished report).Google Scholar
Nagy, K.L., Blum, A.E. & Lasaga, A.C. (1991) Dissolution and precipitation kinetics of kaolinite at 80°C and pH 3. Am. J. Sci. 291, 649 – 686.Google Scholar
Novosad, Z. & Novosad, J. (1984) Determination of alkalinity losses resulting from hydrogen ion exchange in alkaline flooding. SPE of AIME, 49– 52.Google Scholar
Reardon, E.J. (1990) An ion interaction model for the determination of chemical equilibrium in cement/ water systems. Cement Concrete Res. 20, 175 – 192.Google Scholar
Reynolds, R.C., Jr. (1985) NEWMOD, a computer program for the calculation of basal diffraction intensities of mixed layer clay minerals. Reynolds, R.C., editor, 8 Brook Rd., Hanover, New Hampshire 03755, USA.Google Scholar
Savage, D., Bateman, K., Hill, P., Hughes, C., Milodowski, A., Pearce, J., Rae, E. & Rochelle, C. (1992) Rate and mechanism of the reaction of silicates with cement pore waters. Appl. Clay Sci. 7, 33 – 45.Google Scholar
TA - Abfall (1991) ZweiteAllgemeine Verwaltungsvorschrift zum Abfallgesetz, Teil 1: Technische Anleitung zur Lagerung, chemisch/physikalischen, biologischen Behandlung, Verbrennung und Ablagerung von besonders überwachungsbedu ¨rftigen Abfällen. GMBI, 42, 12.Google Scholar
Velde, B. (1965) Experimental determination of muscovite polymorph stabilities. Am. Miner. 50, 436 – 449.Google Scholar
Vieillard, P. & Rassineux, F. (1992) Thermodynamic and geochemical modelling of the alteration of two cement matrices. Appl. Geochem. 1, 125 – 136.Google Scholar
Wieland, E. & Stumm, W. (1992) Dissolution kinetics of kaolinite in acid aqueous solutions at 25°C. Geochim. Cosmochim. Acta, 56, 3339 – 3355.Google Scholar
Wolery, T.J. (1983) EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: user's guide and documentation. Lawrence Livermore Nat. Lab., Livermore, CA, USA, UCRL- 53414-report.Google Scholar