Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-25T06:34:06.400Z Has data issue: false hasContentIssue false

Effects of dry grinding on two kaolins of different degrees of crystallinity

Published online by Cambridge University Press:  09 July 2018

F. Gonzalez Garcia
Affiliation:
Departmento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, Profesor García González s/n Apdo. 533, E-41071 Sevilla, Spain
M. T. Ruiz Abrio
Affiliation:
Departmento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, Profesor García González s/n Apdo. 533, E-41071 Sevilla, Spain
M. Gonzalez Rodriguez
Affiliation:
Departmento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, Profesor García González s/n Apdo. 533, E-41071 Sevilla, Spain

Abstract

Grain-size distribution, specific surface, thermal analysis, electron microscopy and X-ray diffraction were used to study the effect of dry grinding on the structure and properties of two kaolins of different degree of crystallinity. Grinding caused particles to fragment and resulted in the formation of stable large spheroidal aggregates of fine particles. These two processes were not clearly separated by a specific grinding time, but occurred in parallel shortly after grinding was started, although aggregate formation persisted at longer grinding times. The variation in the specific surface area during grinding was found to be dependent on these two processes and on the particle size and crystallinity of the initial kaolin. DTA and XRD data and the amount of water released at different temperatures revealed grinding to gradually destroy the kaolinite structure and cause the loss of hydroxyl ions and the formation of others that were subsequently removed at low and medium temperatures. An explanation for the process whereby the new hydroxyl ions are formed is provided.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akamatu, H. & Takahashi, H. (1965) Catalytic activity of kaolin minerals. Clay Sci., 5, 197–205.Google Scholar
Aleixandre, V. & Garcia Verduch, A. (1951) Relaciones entre algunas propiedades fisicas, químicas y tecnicas de las arcillas. II. Anal. Edaf. Fisiol. Veg., 10, 207–246.Google Scholar
Aleixandre, V. & Gonzalez Pena, J.M. (1954) Identificacion en el microscopio electrónico de algunas arcillas y caolines espanotes. Anal Edaf. Fisiol. Veg., 13, 631–662.Google Scholar
Bennet, H., Eardley, R.P., Hawley, W.P. & Thwaites, I. (1962) Routine control analysis of high-silica and aluminosilicate materials. Trans. Brit. Ceram. Soc., 61, 636–666.Google Scholar
Bennet, H. & Reed, R.O. (1971) Chemical Methods of Silicate Analysis. Academic Press, London.Google Scholar
Blair, G.R. & Chaklader, A.C.D. (1971) Firing vs. reactive hot-pressing. J. Thermal Anal., 4, 311–322.Google Scholar
Boldyrev, V.V. (1983) Experimental methods in the mechanochemistry of inorganic solids. Treatise Material Sci. Tech., 198, 185–223.Google Scholar
Boldyrev, V.V. (1987). Mechanochemistry of inorganic solids. Thermochim. Acta, 110, 303–317.CrossRefGoogle Scholar
Criado, J.M., Gonzalez, M. & Macias, M. (1988) Influence of grinding on both the stability of thermal decomposition mechanism of siderite. Thermochim. Acta, 135, 219–223.Google Scholar
Cornejo, J. & Hermosin, M.C. (1988) Structual alteration of sepiolite by dry grinding. Clay Miner., 23, 391–398.Google Scholar
De Luca, S. & Slaughter, M. (1985) Existence of multiple kaolinite phases and their relationship to disorder in kaolin minerals. Am. Miner., 70, 149–158.Google Scholar
Edwards, H.J. & Toman, K. (1969) Intensity distribution and variance of the iron Kamultiplet J. App. Cryst., 2, 240–246.Google Scholar
Galan Huertos, E. & Martin Vivaldi, J.L. (1973) Caolines españoles. Geología, mineralogia y génesis. Part II. Clasificacion de los depósitos segun su ambiente genetico. Bol. Soc. Esp. Ceram. Vid., 12, 333–340.Google Scholar
Galan Huertos, E. & Martin Vivaldi, J.L. (1975) Caolines espanoles. Geologia, mineralogia y genesis. Part VIII. Depositos residuales y volcanicos. Bol, Soc. Esp. Ceram. Vid., 14, 351–370.Google Scholar
Glasson, D.R. (1981) Vacuum balance studies of milled material and mechanochemical reactions. Thermochim. Acta, 51, 45–52.Google Scholar
Gonzalez Garcia, F. & Munuera, G. (1970) Etude de la surface du rutile. Rev. Chim. Miner., 7, 1023–1040.Google Scholar
Gregg, S.J., Hill, K.F. & Parker, T.V. (1945) Grinding of kaolinite. J. App. Chem., 4, 666–674.Google Scholar
Haase, T. & Winter, K. (1959) L'influence du broyage sur le propietes ceramiques du kaolin. Bull. Soc. Franc. Ceram., 44, 13–19.Google Scholar
Hayashi, H., Koshi, K., Hamada, A. & Sakebe, H. (1962) Structural change of pyrophyllite by grinding and its effect on toxicity of the cell. Clay Sci., 1, 99–108.Google Scholar
Henmi, T. & Yoshinaga, N. (1981) Alteration of imogolite by dry grinding. Clay Miner., 16, 139–149.CrossRefGoogle Scholar
I.G.M.E. (Instituo Geologico y Minero de Espana. Division de Mineria) (1983) Investigacion de arcillas en Levante: Castellon, Valencia, Alicante, Teruel. Proyecto, 10717.Google Scholar
Jakob, J. (1944) Guia para el analisis quimico de las rocas. Edt. C. S. I. C., Madrid, Espana,, 145 pp.Google Scholar
Juhasz, Z. (1969). Szilicatasvanyok mecanokemial aktivalasa. M.T.A. kemical Kozle-menyek, 31, 227–266.Google Scholar
Juhasz, Z. (1974) Mechanochemische Activierung von Silikatmineralen durch Trochen-Feinmahlen. Aufbereitung- Technik,, 559562. Google Scholar
Juhasz, Z. (1980) Mechano-chemical activation of kaolin minerals. Acta Mineralogica-Petrographica,, 121-145. Google Scholar
Kelley, W.P. & Jenny, H. (1936) The relation of crystal structure to base-exchange and its bearing on base-exchange in soils. Soil Sci., 41, 367–382.Google Scholar
Köhler, E., Hofmann, Y., Scharrer, E. & Fruhauf, K. (1960) Uber den einfluss der Mahlung auf Kaolin und Bentonit. Ber. der Deutsch. Deram. Ges., 37, 493498.Google Scholar
Köster, H.M. (1964) Mineralogische and technologische Untersuchungen von Industriakaolinen. Ber der Deutsch. Keram. Ges., 41, 185–196.Google Scholar
Laws, W.D. & Page, J.B. (1946). Changes produced in kaolinite by grinding. Soil Sci., 62, 319–536.CrossRefGoogle Scholar
Lin, I. J., Nadiv, S. & Grodzian, D.J.M. (1979) Review of phase transformation and synthesis of inorganic solids by mechanical treatment (mechano-chemical reactions). Mater. Sci. Eng., 39, 193–209.Google Scholar
Mekta, P.K. (1971) Cement production without heat. Rock Products, May, 8487.Google Scholar
Miller, J.G. & Oulton, T.D. (1970) Prototropy in kaolinite during percussive grinding. Clays Clay Miner., 18, 313–323.Google Scholar
Papirer, E. & Roland, P. (1981) Grinding of chrysotile in hydrocarbons, alcohol and water. Clays Clay Miner., 29, 161–170.Google Scholar
Perez-Rodriguez, J.L., Madrid, L. & Sanchez-Soto, P.J. (1988). Effects of dry grinding on pyrophyllite. Clay Miner., 23, 399–410.Google Scholar
Perkins, A.T. (1948) Kaolin and treated kaolins and their reactions. Soil Sci., 65, 185–192.CrossRefGoogle Scholar
Sanyal, J. & Lahiri, D. (1961) Wirkung der Nassmahlens auf die Korngrossenverteilung und das Basenaustau- schvermogen eines unplastischen China-clays. Trans. Ind. Ceram. Soc., 20, 11–20.Google Scholar
Schrader, R., Haase Tm Kneschke, G., Kutzer, H.J., Hennek, H., Kuntzsche, E., Ulbricht, H., Schaar, E. & Schrickels, S. (1970). Hinfluss der Schwingmahlung von geschlammten Kaolin. Silikattechnik, 21, 196–201.Google Scholar
Wiegmann, J. & Kranz, G. (1957). Observations of the changes in kaolinite by grinding. (Deut. Akad. Wiss Berlin). Silikattechnik, 8, 520–523.Google Scholar