Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-22T13:36:11.380Z Has data issue: false hasContentIssue false

The effect of acid activation and calcination of halloysite on the efficiency and selectivity of Pb(II), Cd(II), Zn(II) and As(V) uptake

Published online by Cambridge University Press:  02 January 2018

Paulina Maziarz*
Affiliation:
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, Krakow 30-059, Poland
Jakub Matusik
Affiliation:
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, Krakow 30-059, Poland

Abstract

The present study investigated the efficiency and mechanisms of aqueous Pb(II), Cd(II), Zn(II) and As(V) adsorption on natural (H), calcined (HC), and acid-activated halloysite (HA). The XRD and FTIR measurements indicated that the aluminosilicate framework was not affected by high-temperature treatment, in contrast to acid activation, which led to structural changes mainly in the tetrahedral sheet. The sorption of cations on H sample was low, though it was most effective for As(V). The X-ray photoelectron spectroscopy results suggested that removal of As(V) might be related to its reduction to As(III) involving oxidation of Fe(II) present in the mineral structure and/or iron minerals. The calcination enhanced halloysite sorption capacity for cations, while the As(V) sorption decreased. This was due to partial dehydroxylation and the subsequent formation of additional active sites. The acid treatment induced selective adsorption of Pb(II).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adriano, D.C. (2001) Trace Elements in Terrestrial Environments: Biogeochemistry Bioavailability, and Risks of Metals. Springer, New York.10.1007/978-0-387-21510-5CrossRefGoogle Scholar
Álvarez-Ayuso, E. & Garcia-Sánchez, A. (2003) Removal of heavy metals from waste waters by natural and Na-exchanged bentonites. Clays and Clay Minerals, 51, 475480.10.1346/CCMN.2003.0510501Google Scholar
APHA (1992) Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.Google Scholar
Babel, S. & Kurniawan, T.A. (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, B97, 219243.10.1016/S0304-3894(02)00263-7Google Scholar
Bahranowski, K., Jana, J., Machej, T., Serwicka, E.M. & Vartikian, L.A. (1997) Vanadium-doped titania-pil-lared montmorillonite clay as a catalyst for selective catalytic reduction of NO by ammonia. Clay Minerals, 32, 665672.10.1180/claymin.1997.032.4.16CrossRefGoogle Scholar
Bhattacharyya, K.G. & Sen Gupta, S. (2007) Influence of acid activation of kaolinite and montmorillonite on adsorptive removal of Cd(II) from water. Industrial & Engineering Chemistry Research, 46, 37343742.10.1021/ie061475nGoogle Scholar
Bhattacharyya, K.G. & Sen Gupta, S. (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Advances in Colloid and Interface Science, 140, 114131.10.1016/j.cis.2007.12.008CrossRefGoogle ScholarPubMed
Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N.K. & Matis, K.A. (2003) Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater. Water Research, 37, 4018026.CrossRefGoogle ScholarPubMed
Bose, P. & Sharma, A. (2002) Role of iron on controlling speciation and mobilization of arsenic in subsurface environment. Water Research, 36, 4916926.10.1016/S0043-1354(02)00203-8CrossRefGoogle ScholarPubMed
D'Arcy, M., Weiss, D., Bluck, M. & Vilar, R. (2011) Adsorption kinetics, capacity and mechanism of arsenate and phosphate on a bifunctional TiO2-Fe2O3bi-composite. Journal of Colloid and Interface Science, 364, 205212.10.1016/j.jcis.2011.08.023Google Scholar
Dąbrowski, A., Hubicki, Z., Podkościelny, P. & Robens, E. (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56, 91106.10.1016/j.chemosphere.2004.03.006Google Scholar
Erdem, E. Karapinar, N. & Donat, R. (2004) The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280, 309314.10.1016/j.jcis.2004.08.028Google Scholar
Freundlich, H.M.F. (1906) Uber die adsorption in losungen. Zeitschrift für Physikalische Chemie, 57A, 38570.Google Scholar
Geatches, D.L., Clark, S.J. & Greenwell, H.C. (2012) Iron reduction in nontronite-type clay minerals: modelling a complex system. Geochimica et Cosmochimica Acta, 81, 1327.10.1016/j.gca.2011.12.013Google Scholar
Godea, F. & Pehlivanb, E. (2002) A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution. Journal of Hazardous Materials, 100, 231243.10.1016/S0304-3894(03)00110-9Google Scholar
Halter, W.E. & Pfeifer, H.R. (2001) Arsenic(V) adsorption onto α Al2O3 between 25 and 70°C. Applied Geochemistry, 16, 793802.10.1016/S0883-2927(00)00066-4CrossRefGoogle Scholar
ISO 15472:2001. Surface chemical analysis - X-ray photoelectron spectrometers - Calibration of energy scale.Google Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. (2005) Halloysite clay minerals — a review. Clay Minerals, 40, 383426.10.1180/0009855054040180Google Scholar
Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 13611403.10.1021/ja02242a004Google Scholar
Li, Z. & Bowman, R.S. (2001) Retention of inorganic oxyanions by organo-kaolinite. Water Research, 35, 37713776.10.1016/S0043-1354(01)00120-8CrossRefGoogle ScholarPubMed
Li, Q., Zhai, J., Zhang, W., Wang, M. & Zhou, J. (2007) Kinetic studies of adsorption of Pb(II), Cr(III) and Cu (II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Materials, 141, 163167.10.1016/j.jhazmat.2006.06.109CrossRefGoogle Scholar
Luengo, C., Pucciaa, V. & Avena, M. (2011) Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite. Journal of Hazardous Materials, 186, 17131719.Google Scholar
Maliou, E., Malamis, M. & Sakellarides, P.O. (1992) Lead and cadmium removal by ion exchange. Water Science and Technology, 25, 133138.10.2166/wst.1992.0020Google Scholar
Manning, B.A. & Goldberg, S. (1996) Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite. Clays and Clay Minerals, 44, 609623.10.1346/CCMN.1996.0440504Google Scholar
Manohar, D.M., Noeline, B.F. & Anirudhan, T.S. (2006) Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase. Applied Clay Science, 31, 194206.10.1016/j.clay.2005.08.008CrossRefGoogle Scholar
Matlock, M.M., Howerton, B.S. & Atwood, D.A. (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Research, 36, 47574764.10.1016/S0043-1354(02)00149-5Google Scholar
Matusik, J. (2010) Minerały z grupy kaolinitu jako prekursory nanorurek mineralnych (Kaolin group minerals as precursors of mineral nanotube). PhD thesis, AGH University of Science and Technology, Krakow, Poland, 174 pp., in Polish.Google Scholar
Matusik, J. (2014) Arsenate, orthophosphate, sulfate, and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge. Chemical Engineering Journal, 246, 244253.10.1016/j.cej.2014.03.004Google Scholar
Matusik, J. & Wścisło, A. (2014) Enhanced heavy metal adsorption on functionalized nanotubular halloysite interlayer grafted with aminoalcohols. Applied Clay Science, 100, 5059.10.1016/j.clay.2014.06.034CrossRefGoogle Scholar
Matusik, J., Gaweł, A., Bielanska, E., Osuch, W. & Bahranowski, K. (2009) The effect of structural order on nanotubes derived from kaolin-group minerals. Clays and Clay Minerals, 57, 452464.10.1346/CCMN.2009.0570406Google Scholar
Mercier, L. & Pinnavaia, T.J. (1998) A functionalized porous clay heterostructure for heavy metal ion (Hg2+) trapping. Microporous and Mesoporous Materials, 20, 101106.10.1016/S1387-1811(97)00019-XGoogle Scholar
Murray, H.H. (1999) Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 399.10.1180/000985599546055CrossRefGoogle Scholar
Ozaki, H., Sharma, K. & Saktaywirf, W. (2002) Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination, 164, 105110.Google Scholar
Pálková, H., Madejová, J., Zimowska, M., Bielanska, E., Olejniczak, Z., Litynska-Dobrzynska, L. & Serwicka, E.M. (2009) Laponite derived porous clay heterostruc-tures: I. Synthesis and physicochemical characterization. Microporous and Mesoporous Materials, 127, 228236.10.1016/j.micromeso.2009.07.019Google Scholar
Patnukao, P., Kongsuwan, A. & Pavasant, P. (2008) Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. bark. Journal of Environmental Sciences, 20, 10281034.10.1016/S1001-0742(08)62145-2Google Scholar
Pedersen, H.D., Postma, D. & Jakobsen, R. (2006) Release of arsenic associated with the reduction and transformation of iron oxides. Geochimica et Cosmochimica Acta, 70, 41164129.Google Scholar
Qdais, H.A. & Moussa, H. (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination, 164, 105110.10.1016/S0011-9164(04)00169-9Google Scholar
Rengaraj, S., Yeon, K.H. & Moon, S.H. (2002) Kinetics of adsorption of Co(II) removal from water and waste-water by ion exchange resins. 36, 17831793.Google Scholar
Rida, K., Bouraoui, S. & Hadnine, S. (2013) Adsorption of methylene blue from aqueous solution by kaolin and zeolite. Applied Clay Science, 83-84, 99105.10.1016/j.clay.2013.08.015Google Scholar
Rodrigues, M.G.F. (2003) Physical & catalytic characterization of smectites from Boa-Vista, Paraíba, Brazil. Ceramica, 49, 146150.10.1590/S0366-69132003000300007Google Scholar
Sen Gupta, S. & Bhattacharyya, K.G. (2005) Interaction of metal ions with clays: I. A case study with Pb(II). Applied Clay Science, 30, 199208.10.1016/j.clay.2005.03.008Google Scholar
Silva, J.E., Paiva, A.P., Soares, D., Labrincha, A. & Castro, F. (2005) Solvent extraction applied to the recovery of heavy metals from galvanic sludge. Journal of Hazardous Materials, B120, 113118.10.1016/j.jhazmat.2004.12.008Google Scholar
Sprynskyy, M., Buszewski, B., Terzyk, A.P. & Namieśnik, J. (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304, 2128.CrossRefGoogle Scholar
Srinivasan, R. (2011) Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Advances in Materials Science and Engineering, 2011, 117.CrossRefGoogle Scholar
Srivastava, P., Singh, B. & Angove, M. (2005) Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 290, 2838.10.1016/j.jcis.2005.04.036Google Scholar
Suraj, G., Iyer, C.S.P. & Lalithambika, M. (1998) Adsorption of cadmium and copper by modified kaolinites. Applied Clay Science, 13, 293306.Google Scholar
Yuan, P., Tan, D. & Annabi-Bergaya, F. (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112-113, 7593.10.1016/j.clay.2015.05.001CrossRefGoogle Scholar
Wang, Q., Zhang, I. & Wang, A. (2013) Alkali activation of halloysite for adsorption and release of ofloxacin. Applied Surface Science, 287, 5461.10.1016/j.apsusc.2013.09.057CrossRefGoogle Scholar
Zhang, A.-B., Pan, L., Zhang, H.-Y., Liu, S.-T., Ye, Y., Xia, M.-S. & Chen, X.-G. (2012) Effects of acid treatment on the physico-chemical and pore characteristics of halloysite. Colloids and Surfaces A: Physicochemical and Engineering, 396, 182188.10.1016/j.colsurfa.2011.12.067CrossRefGoogle Scholar
Zhang, S.Q. & Hou, W.G. (2008) Adsorption behavior of Pb (II) on montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 320, 9297.10.1016/j.colsurfa.2008.01.038Google Scholar