Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T02:04:37.107Z Has data issue: false hasContentIssue false

Diagenesis of the Central Basque-Cantabrian Basin (Iberian Peninsula) based on illite-smectite distribution

Published online by Cambridge University Press:  09 July 2018

J. Aróstegui
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del País Vasco, Spain
M. C. Zuluaga
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del País Vasco, Spain
F. Velasco
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del País Vasco, Spain
M. Ortega-Huertas
Affiliation:
Departamento de Mineralogía y Petrología, Instituto Andaluz de Geología Mediterránea, Universidad de Granada, Spain
F. Nieto
Affiliation:
Departamento de Mineralogía y Petrología, Instituto Andaluz de Geología Mediterránea, Universidad de Granada, Spain

Abstract

X-ray diffraction was used to analyse the distribution of clay minerals in the <2 µm fraction of the lutitic and marly facies from the centre of the Basque-Cantabrian Basin (Basque Arc), where the sedimentary section is 2000 to 10,000 m thick. Most of the deposits were laid down during the Cretaceous and Paleogene and were related to the opening and closing of the Bay of Biscay. The most noteworthy variations are in kaolinite, smectite and mixed-layered (R = 0, R = 1 and R ≥ 3) illite-smectite, which can be ascribed both to provenance and to diagenesis. A general diminution in expandability is related to the gradual transformation of smectite to illite from south to north, and with depth. Temperature, residence time and chemical activity during diagenesis are the factors that had greatest influence on the changes in the original mineral assemblages inherited from the source area. On the basis of the clay minerals and the Kübler index, a general scheme is proposed for the diagenetic evolution of the area from the initial stages to anchimetamorphism.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. & Peacor, D.R. (1986) Transmission and analytical electron microscopy of the smectite-illite transition. Clays Clay Miner., 34, 165179.Google Scholar
Amiot, M., Floquet, M., Mathey, B., Pascal, A. & Salomon, J. (1982) Evolution de la marge cantabrique et son arrière-pays iberique au Crétacé. Cuad. Geol. Iberica,, 8, 37–63.Google Scholar
Bethke, C.M. & Altaner, S.P. (1986) Layer-bi-layer mechanism of smectite illitization and application to a new rate law. C/fly Miner. 34, 136145.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull., 76, 803–832.Google Scholar
Biollot, G. & Malod, J. (1988) The north and north-west Spanish continental margin: a review. Rev. Soc. GeoL Espanay, 1, 295–316.Google Scholar
Bruce, R.L. & Warner, M.A. (1986) Relationship between illite-smectite diagenesis and hydrocarbon generation in lower Cretaceous Mowry and Skull Creek shales of the northern Rocky Mountain area. Clays Clay Miner., 34, 390–402.Google Scholar
Chamley, H. (1979) North Atlantic clay sedimentation and paleoenvironment since the late Jurassic. Pp. 342- 361 in: Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment.(Talwani, M., Hay, W., & Ryan, W.B.F., editors), Ser. Am. Geophys. Union.Google Scholar
Chamley, H. (1989) Clay Sedimentologypp. 425-524. Springer-Verlag, Berlin.Google Scholar
Eberl, D.D. & Srodon, J. (1988) Ostwald ripening and interparticle-diffraction effects for illite crystals. Am. Miner., 73, 1335–1345.Google Scholar
Feuille, P. & Rat, P. (1971) Structures et paléogéographies pyrénéo pyreneo-cantabrique. In: Histoire Structurale du Golfe de Gascogne, 2: V.l. 1.48 Technip.Google Scholar
Freed, R.L. & Peacor, D.R. (1989) Variability in temperature of the smectite/illite reaction in Gulf Coast sediments. Clay Miner., 24, 171–180.Google Scholar
Heling, D. (1974) Diagenetic alteration of smectite in argillaceous sediments of the Rhinegraben. Sedimentology,, 21 463472.Google Scholar
Hower, J., Eslinger, E., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geol. Soc. Amer. Bull., 87, 725–737.Google Scholar
I.G.M.E. (1987). Contribución de la Exploracion Petrolifera al Conocimiento de al Geologia de Espaha.I.G.M.E. Hd. Madrid.Google Scholar
Inoue, A., Kohyama, N., Kitagawa, R. & Watanabe, T. (1987) Chemical and morphological evidence for the conversion of smectite to illite. Clays Clay Miner., 35, 111–120.CrossRefGoogle Scholar
Inoue, A., Bochet, A., Velde, B. & Meunier, A. (1989) Convenient technique for estimating smectite layer percentage in randomly interstratified illite/smectite minerals. Clays Clay Miner., 37, 227–234.Google Scholar
Jennings, S. & Thompson, G.R. (1986) Diagenesis in Plio-Pleistoene sediments of the Colorado River Delta, southern California. J. Sed. Pet., 56, 88–98.Google Scholar
Jiang, W.T., Peacor, D.R., Merriman, R.J. & Roberts, B. (1990) Transmission and analytical electron microscopic study of mixed-layer illite/smectite formed as an apparent replacement product of diagenetic illite. Clays Clay Miner., 38, 449–468.Google Scholar
Kisch, H.J. (1987) Correlation between indicators of very low-grade metamorphism. Pp. 227300 in: Low Temperature Metamorphism (Frey, M., editor). Blackie, New York.Google Scholar
Kisch, H.J. (1990) Recommendations on illite “crystallinity”. IGCP Project 294 (VI GM) Working Group, 19.Google Scholar
Kübler, B. (1968) Evaluation quantitative du metamorphisme para la cristallinité de líllite. Bull. Centre Rech. Pau- SNPA, 2, 385–397.Google Scholar
Kübler, B., Prmo, N.J. Heroux, Y., Charollais, J. & Weidmann, M. (1979) Sur lepouvoir réflecteur de la vitrinite dans quelques roches du Jura, de la Molasse et des Nappes Prealpines, helvétiques et peniques. Eclogue geol. Helv., 72, 347–373.Google Scholar
Mathey, B. (1987) Les flysch du Cretace superieur des Pyrénes basques (France, Espagne). Mem. Geol. Univ. Dijon, 112.Google Scholar
Miller, K.G., Fairbanks, R.G. & Mountain, G.S. (1987) Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography,, 2, 1–19.Google Scholar
Pearson, M.J. & Small, J.S. (1988) Illite-smectite diagenesis and paleotemperatures in northern North Sea Quaternary to Mesozoic shale sequences. Clay Miner., 23, 109–132.Google Scholar
Ramírez del Pozo, J. (1973) Smtesis Geoldgica de la Provincia de Alava pp. 5357. Hd. Obra Cultural CAMCV, Vitoria.Google Scholar
Ramírez del Pozo, J. (1987) Geologfa del subsuelo en el sector meridional de la Cuenca Vasco-Cantabrica. Geogaceta,, 3, 40–44.Google Scholar
Rat, P. (1959) Les Pays Cretaces Basco-Cantabriques.Ed. Publ. Univ. Dijon. XVIII.Google Scholar
Reynolds, R.C. (1980). Interstratified clay minerals. Pp. 249-304 in: Crystal Structures of Clay Minerals and their X-ray Identification(Brindley, G.W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Reynolds, R.C. & Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonite. Clays Clay Miner., 18, 25–36.CrossRefGoogle Scholar
Scotchman, I.C. (1987) Clay diagenesis in the Kimmeridge Clay Formation, onshore UK, and its relation to organic maturation. Mineral. Mag., 51, 535–551.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierce Shale. U.S. Geol. Surv. Prof. Pap., 391-C.Google Scholar
Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediment. A review. Earth ScL Rev., 21, 251–293.Google Scholar
Srodon, J. (1984) X-ray powder diffraction identification of illitic materials. Clays Clay Miner., 32, 337–349.Google Scholar
Stackelberg, U. (1960) Der diapir von Murguia (Nordspanien).PhD thesis, Univ. Bonn, Germany.Google Scholar