Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T23:12:21.069Z Has data issue: false hasContentIssue false

Characterization of clays by organic compounds

Published online by Cambridge University Press:  09 July 2018

Abstract

Many problems—from soil research to ceramics—require a reliable characterization of the clay minerals involved. This can be done using four clay-organic reactions: (i) staining tests and dye adsorption; (ii) glycerol and glycol adsorption; (iii) intercalation; (iv) alkylammonium ion exchange. Dye adsorption (staining tests) and glycerol adsorption allow a preliminary identification of the clay mineral groups. Intercalation reactions indicate minute differences between kaolins which cannot be detected by XRD and DTA. Alkylammonium ion exchange provides the best method for characterizing smectites and is sensitive to changes in the layer charge.

Résumé

Résumé

De nombreux problèmes—de la science des sols à, celle des céramiques—nécessistent une caractérisation correcte des minéraux argileux concernés. Pour cela on peut utiliser 4 réactions: (i) les tests de coloration et l'adsorption de colorants; (ii) l'adsorption de glycol et de glycérol; (iii) l'intercalation; (iv) l'échange avec des ions alkylammonium. L'adsorption de colorants (test de coloration) et l'adsorption de glycérol, permettent une identification préliminaire du groupe auquel appartient le minéral argileux. Les réactions d'intercalation indiquent de petites différences entre les kaolins, impossibles à détecter par DRX et ATD. L'échange avec les ions alkylammonium fournit la meilleure méthode pour caractériser les smectites; elle est sensible aux variations de la charge des feuillets.

Kurzreferat

Kurzreferat

Eine zuverlässige Charakterisierung der Tonminerale wird bei vielen Untersuchungen gefordert, die von Untersuchungen von Bodentonen bis zur Verwendbarkeit der Tonminerale in der keramischen Industrie reichen. Vier Reaktionen mit organischen Verbindungen können dazu herangezogen werden: (i) Adsorption von Farbstoffen; (ii) Adsorption von Glyzerin und Glycol; (iii) Einlagerung organischer Verbindungen; (iv) Eintausch von Alkylammoniumionen. Die Adsorption von Farbstoffen und Glycol (Glycerin) erlaubt eine grobe Identifizierung der einzelnen Gruppen der Tonminerale. Dagegen können durch Einlagerungsreaktionen geringe Differenzen zwischen Kaolinen erkannt werden, die sich röntgenographisch und thermoanalytisch nicht bemerkbar machen. Der Eintausch von Alkylammoniumionen bietet die beste Möglichkeit Smectite zu charakterisieren und auch geringe Veränderungen in der Schichtladung zu erkennen.

Resumen

Resumen

La resolución de diversos problemas que van desde el estudio del suelo hasta los estudios cerámicos, requieren una caracterización precisa de los minerales de la arcilla contenidos en la muestra. Esta caracterización puede hacerse utilizando cuatro tipos de reacciones de compuestos orgánicos con las archillas, a saber: (i) tests de color y adsorción de colorantes; (ii) adsorción de glicerol y glicol; (iii) intercalación; (iv) cambio iónico con cationes alquilamonio. Le adsorción de colorantes (tests de color) y la adsorción de glicerol permiten una identificación previa del grupo al que pertenecen los minerales. Las reacciones de intercalación ponen de relieve pequeñas diferencias entre caolines que no pueden ser detectados por DRX y ATD. El cambio iónico con iones alquilamonio es el mejor método de caracterización de esmectitas y es sensible a cambios en la densidad de carga de la lámina.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartz, P. & Range, K.J. (1979) Bildung von Wasser-Intercalationskomplexen nach mechnischer Beanspruchung von Kaolinit. Z. Naturforsch. 34b, 766767.Google Scholar
Bradley, W.F. (1945) Molecular association between montmorillonite and some polyfunctional organic liquids. J. Am. Chem. Soc. 67, 975981.Google Scholar
Brindley, G.W. (1966) Ethylene glycol and glycerol complexes of smectites and vermiculites. Clay Miner. 6, 237259.Google Scholar
Brindley, G.W. & Hofmann, R.W. (1962) Orientation and packing of aliphatic chain molecules on montmorillonite. Clays Clay Miner. 9, 246256.Google Scholar
Brindley, G.W. & Thompson, T.D. (1970) Methylene blue absorption by montmorillonites. Determination of surface areas and exchange capacities with different initial cation saturations. Israel J. Chem. 8, 409415.Google Scholar
Byrne, P.J.S. (1954) Some observations on montmorillonite-organic complexes. Clays Clay Miner. 2, 241253.CrossRefGoogle Scholar
Chassin, P. (1976a) Influence de la stéréo-chimie des diols sur la formation des complexes interfoliaires de la montmorillonite calcique. Clay Miner. 11, 1322.CrossRefGoogle Scholar
Chassin, P. (1976b) Signification de la mesure des surfaces totales des argiles avec l'éthane 1 · 2 diol. Clay Miner. 11, 2330.Google Scholar
Clementz, D.M. & Mortland, M.M. (1974) Properties of reduced charge montmorillonite: tetra-alkylammonium ion exchange forms. Clays Clay Miner. 22, 223229.Google Scholar
Cradwick, P.D. (1975) On the calculation of one-dimensional X-ray scattering from interstratified material. Clay Miner. 10, 347356.Google Scholar
Cradwick, P.D. & Wilson, M.J. (1978) Calculated X-ray diffraction curves for the interpretation of a three-component interstratified system. Clay Miner. 13, 5365.Google Scholar
Diamond, D. & Kinter, E.B. (1956) Surface areas of clay minerals as derived from measurements of glycerol retention. Clays Clay Miner. 3, 334347.Google Scholar
Eltantawy, I.M. & Arnold, P.W. (1972) Reappraisal of ethylene glycol mono-ethyl ether (EGME) method for surface area estimations of clays. J. Soil Sci. 24, 232238.Google Scholar
Fahn, R. & Gennrich, M. (1955) Staining of clay minerals with fluorescent dyes. Tonind. Ztg. Keram. Rundschau 79, 233236.Google Scholar
Fenoll, Hach-Ali P. & Weiss, A. (1969) Estudio de la reacción de caolinita y N-metil formamida. Annales de la Real Sodièdad española de Fisica y Quimica LXV, 769790.Google Scholar
Fernandez-Gonzales, M., Weiss, A. & Lagaly, G. (1976) Über das Verhalten nordwestspanischer Kaoline bei der Bildung von Einlagerungsverbindungen. Keram. Z. 28, 5558.Google Scholar
Frey, E. & Lagaly, G. (1979) Selective coagulation and mixed-layer formation from sodium smectite solutions. Proc. Int. Clay Conf. Oxford, 131140.Google Scholar
Furukawa, T. & Brindley, G.W, (1973) Adsorption and oxidation of benzidine and aniline by montmorillonite and hectorite. Clays Clay Miner. 21, 279288.CrossRefGoogle Scholar
Grim, R.E. (1968) Clay Mineralogy. McGraw-Hill Book Company, New York.Google Scholar
Hang, P.H. & Brindley, G.W. (1970) Methylene blue adsorption by clay minerals. Determination of surface areas and cation exchange capacities. Clay Clay Miner. 18, 203212.CrossRefGoogle Scholar
Hofmann, U. & Dammler, J. (1969) Die Methylenblauadsorption an Montmorillonit. Chimia 23, 476480.Google Scholar
Jackson, M.L. & Abdel-Kader, F.H. (1978) Kaolinite intercalation procedure for all sizes and types with XRD spacing distinctive from other phyllosilicates. Clays Clay Miner. 26, 8187.Google Scholar
Jonas, E.C. & Roberson, H.E. (1966) Structural charge density as indicated by montmorillonite hydration. Clays Clay Miner. 13, 223230.Google Scholar
Jones, A.A. & Greenland, D.J. (1980) Quantitative determination of the interlamellar volume in an interstratified mica-smectite soil clay. Clay Miner. 15, 175191.CrossRefGoogle Scholar
Jordan, J.W. (1949) Organophilic bentonites. I. Swelling in organic liquids. J. Phys. Colloid Chem. 53,294306.Google Scholar
Keller, W.D. & Haenni, R.P. (1978) Effects of micro-sized mixtures of kaolin minerals on properties of kaolinites. Clay Clay Miner. 26, 384396.Google Scholar
Lagaly, G. (1976) Kink-block and gauche-block structures of bimolecular films. Angew. Chem. Int. Ed. Engl. 15, 575586.Google Scholar
Lagaly, G. (1979a) The ‘Layer Charge’ of regular interstratified 2/1-clay minerals. Clay Clay Miner. 27, 110.CrossRefGoogle Scholar
Lagaly, G. (1979b) Crystalline silicic acids and their interface reactions. Advances Colloid Interface Sci. 11, 105148.Google Scholar
Lagaly, G. & Fahn, R. (1981) Vorgänge bei der Sodaaktivierung von Bentoniten. Keram. Z. (in press).Google Scholar
Lagaly, G. & Weiss, A. (1970) Anordnung und Orientierung kationischer Tenside auf Silicatoberflächen, Teil III Parafnnähnliche Strukturen bei n-Alkammonium-Schichtsilicaten mit mittlerer Schichtladung (Vermiculite). Kolloid Z. Z. Polymere 238, 485493.Google Scholar
Lagaly, G. & Weiss, A. (1971) Anordnung und Orientierung kationischer Tenside auf Silicatoberflächen Teil IV Anordnung von n-Alkylammoniumion en bei niedrig geladenen Schichtsilicaten. Kolloid Z. Z. Polymere 243, 4855.Google Scholar
Lagaly, G. & Weiss, A. (1976) The layer charge of smectitic layer silicates. Proc. Int. Clay Conf. Mexico City, 157172.Google Scholar
Lagaly, G., Fernandez-Gonzales, M. & Weiss, A. (1976) Problems in layer-charge determination of Montmorillonites. Clay Miner. 11, 173187.Google Scholar
Lagaly, G., Stange, H., Taramasso, M. & Weiss, A. (1970) N-n-Alkylpyridinium derivatives of mica-type layer silicates. Israel J. Chem. 8, 399408.Google Scholar
Levy, R. & Francis, C.W. (1975) A quantitative method for the determination of montmorillonite in soils. Clays Clay Miner. 23, 8589.Google Scholar
Madsen, F.T. (1977) Surface area measurements of clay minerals by glycerol sorption on a thermobalance. Thermochimi Aeta 21, 8993.Google Scholar
McAtee, J.L. (1958) Heterogeneity in montmorillonite. Clays Clay Miner. 5, 279288.Google Scholar
McBride, M.B. (1979) Reactivity of adsorbed and structural iron in hectorite as indicated by oxidation of benzidine. Clays Clay Miner. 27, 224230.Google Scholar
MacEwan, D.M.C. (1948) Complexes of clays with organic compounds. I. Complex formation between montmorillonite and halloysite and certain organic liquids. Trans. Farad. Soc. 44. 349367.Google Scholar
MacEwan, D.M.C., Ruiz Amil, A. & Brown, G. (1961) Interstratified clay minerals. In: The X-ray ldentification and Crystal Structures of Clay Minerals (Brown, G.), editor., Mineral Society, London.Google Scholar
Moore, D.Z. & Dixon, J.B. (1970) Glycerol vapor adsorption on clay minerals and montmorillonite soil clays. Soil Sci. Soc. Am. Proc. 34, 816822.Google Scholar
Müller-Vonmoos, M. & Kahr, G. (1977) Alteration of the mineralogical composition and the plasticity in a landslide in Opalinuston (Lowest Dogger) and their influence to the residual shear strength. Proc. 3rd European Clay Conf. Oslo, 138139.Google Scholar
Peigneur, P., Maes, A. & Cremers, A. (1975) Heterogeneity of charge density distribution in montmorillonite as inferred from cobalt adsorption. Clays Clay Miner. 23, 7175.Google Scholar
Perez-Rodriguez, J.L. & Wilson, M.J. (1969) Effects of pretreatment on a 14 Å swelling mineral from Gartly, Aberdeenshire. Clay Miner. 8, 3945.CrossRefGoogle Scholar
Perez-Rodriguez, J.L., Weiss, A. & Lagaly, G. (1977) A natural clay organic complex from Andalusian Black Earth. Clays Clay Miner. 25, 243251.Google Scholar
Range, K.J., Range, A. & Weiss, A. (1970) Fire-clay type kaolinite or fire-clay mineral? Experimental classification of kaolinite-halloysite minerals. Proc. Int. Clay Conf. Tokyo, 1, 313.Google Scholar
Rengasamy, P., Von Assciie, J.B. & Uytterhoeven, J.B. (1976) Particle size of Wyoming bentonite and its relation to the CEC and the homogeneity of charge distribution. Farad. Trans. I 2, 376 381.Google Scholar
Reynolds, R.C. & Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonites. Clays Clay Miner. 18, 2536.Google Scholar
Ruiz Amil, A., Ramirez, Garcia A. & MacEwan, D.M.C. (1967) Curvas de difracciín de rayos X para el analisis de estructuras interstratificadas. C. S. J. C., Madrid, Volturna Press.Google Scholar
Środoń, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays Clay Miner. 28,401411.Google Scholar
Środoń, J. & Eberl, D.D. (1980) The presentation of X-ray data for clay minerals. Clay Miner. 15, 317320.Google Scholar
Stul, M.S. & Mortier, W.J. (1974) The heterogeneity of the charge density in montmorillonites. Clays Clay Miner. 22, 391396.Google Scholar
Tennakoon, D.T.B., Thomas, J.M. & Tricker, H.J. (1974) Surface and intercalate chemistry of layered silicates. J. Chem. Soc. Dalton, 22112215.Google Scholar
Talibudeen, A.(1954) Complex formation between montmorillonoid clay and aminoacids and proteins. Trans. Farad. Soc. 51, 582590.CrossRefGoogle Scholar
Tettenhorst, R. & Grim, R.E. (1975) Interstratified clays. I and II. Am. Miner. 60, 4959, 60-65.Google Scholar
Theng, B.K.G. (1971) Mechanisms of formation of colored clay-organic complexes. A review. Clays Clay Miner. 19, 383390.Google Scholar
Tributh, H.(1976) Die Umwandlung der glimmerartigen Schichtsilicate zu aufweitbaren Dreischicht-Tonmineralen. Z. Pflanz. Bodenk. 7 25.Google Scholar
Vogt, K. & Köster, H.M. (1978) Zur Mineralogie, Kristallchemie und Geochemie einiger Montmorillonite aus Bentoniten. Clay Miner. 13, 2543.Google Scholar
Wada, K. (1961) Lattice expansion of kaolin minerals by treatment with potassium acetate. Am. Miner. 46, 7891.Google Scholar
Weir, A.H. & Rayner, J.H. (1974) An interstratified illite-smectite from Denchworth series soil in weathered Oxford Clay. Clay Miner. 10, 173187.Google Scholar
Weir, A.H., Ormerod, E.C. & El Mansey, I.M.I. (1975) Clay mineralogy of sediments of the western Nile delta. Clay Miner. 10, 369386.Google Scholar
Weiss, A. (1961) Eine Schichteinschlußverbindung von Kaolinit mit Harnstoff. Angew. Chem. 73, 736.Google Scholar
Weiss, A. & Kantner, J. (1960) Über eine einfache Möglichkeit zur Abschätzung der Schichtladung glimmerartiger Schichtsilicate. Z. Naturforsch. 15b, 804807.Google Scholar
Weiss, A., Becker, H.O. & Lagaly, G. (1970) Determination of charge density sequence in regular interstratified mica-type layer silicates by means of their n-alkylammonium derivatives I. Layer charge sequence in Allevardite from Hungary. Proc. Int. Clay Conf. Tokyo, II, 6773.Google Scholar
Weiss, A., Lagaly, G. & Beneke, K. (1971) steigerung der Nachweisempfindlichkeit von quellungsfähigen Dreischichttonmineralen in Gemengen. Z. Pflanz. Bodenk. 129, 193202.Google Scholar
Wilson, M.J. & Tait, J.M. (1977) Halloysite in some soils from north-east Scotland. Clay Miner. 12, 5966.Google Scholar
Yariv, S., Lahav, L. & Lacher, M. (1976) On the mechanism of staining montmorillonite by benzidine. Clays Clay Miner. 24, 5152.Google Scholar