Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T12:11:34.469Z Has data issue: false hasContentIssue false

Certification and quality criteria of peloids used for therapeutic purposes

Published online by Cambridge University Press:  09 July 2018

A. Quintela*
Affiliation:
University of Aveiro, Department of Geosciences, GeoBioTec – Geobiosciences, Geotechnologies and Geoengineering Research Center, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
D. Terroso
Affiliation:
University of Aveiro, Department of Geosciences, GeoBioTec – Geobiosciences, Geotechnologies and Geoengineering Research Center, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
E. Ferreira da Silva
Affiliation:
University of Aveiro, Department of Geosciences, GeoBioTec – Geobiosciences, Geotechnologies and Geoengineering Research Center, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
F. Rocha
Affiliation:
University of Aveiro, Department of Geosciences, GeoBioTec – Geobiosciences, Geotechnologies and Geoengineering Research Center, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
*

Abstract

The empirical application of muds for therapeutic purposes is widely known. This is called pelotherapy and consists of the local or generalized application of a mixture of a solid phase and a liquid phase (peloid) for the recovery of arthro-rheumatic issues, bone-muscle traumatic damage and dermatological pathologies. During the time of mixing (maturation process) the mud is progressively colonized by thermophilic microorganisms that contribute to improvements in the peloid quality and endow the mud with organic substances. Several studies report diatoms as the main agent of thermal muds capable of producing anti-inflammatory sulphoglycolipid which renders the mud suitable for this use. The effect of the temperature is also considered important for therapeutic purposes.

Recent studies assessed physical, chemical and technological properties of some peloids in use at spa centres. Some maturation surveys have also been performed in recent years. The need for quality criteria establishment and certification of clayey products intended to be used currently is evident, especially for peloids which have therapeutic action. Consequently, this study aims at the compilation and analysis of some characteristics of peloids from the literature in order to contribute to a major database that allows the establishment of regulations and quality criteria for suitable applications of peloids.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baschini, M.T., Pettinari, G.R., Vallés, J.M., Aguzzi, C., Cerezo, P., López-Galindo, A., Setti, M. & Viseras, C. (2010) Suitability of natural sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Applied Clay Science, 49, 205–212.CrossRefGoogle Scholar
Bellometti, S., Cecchettin, M., Lalli, A. & Galzigna, L. (1996) Mud pack treatment increases serum antioxidant defenses in osteoarthrosic patients. Biomedicine & Pharmacotherapy, 50, 37.Google Scholar
Bellometti, S., Bertè, F., Richelmi, P., Tassoni, T. & Galzigna, L. (2002) Bone remodelling in osteoarthrosic subjects undergoing a physical exercise program. Clinica Chimica Acta, 325, 97–104.Google Scholar
Bender, T., Karagülle, Z., Bálint, G., Gutenbrunner, C., Bálint, P. & Sukenik, S. (2005) Hydrotherapy, balneotherapy, and spa treatment in pain management. Rheumatology International, 25, 220–224.CrossRefGoogle ScholarPubMed
Brindley, G.M. & Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, Monograph no.5, London.CrossRefGoogle Scholar
Britschka, Z., Teodoro, W., Velosa, A. & Mello, S. (2007) The efficacy of Brazilian black mud treatment in chronic experimental arthritis. Rheumatology International, 28, 39–45.Google Scholar
Bruno, A., Rossi, C., Marcolongo, G., Di Lena, A., Venzo, A., Berrie, C. & Corda, D. (2005) Selective in vivo anti-inflammatory action of the galactolipid monogalactosyldiacylglycerol. European Journal of Pharmacology, 524, 159–168.Google Scholar
Cara, S., Carcangiu, G., Palomba, M. & Tamanini, M. (2000a) The bentonites in pelotherapy: chemical, mineralogical and technological properties of materials from Sardinia deposits (Italy). Applied Clay Science, 16, 117–124.Google Scholar
Cara, S., Carcangiu, G., Palomba, M. & Tamanini, M. (2000b) The bentonites in pelotherapy: thermal properties of clay pastes from Sardinia (Italy). Applied Clay Science, 16, 125–132.Google Scholar
Carretero, M., Pozo, M., Sánchez, C., García, F.J., Medina, J.A. & Bernabé, J.M. (2007) Comparison of saponite and montmorillonite behaviour during static and stirring maturation with seawater for pelotherapy. Applied Clay Science, 36, 161–173.CrossRefGoogle Scholar
Carretero, M., Pozo, M., Martín-Rubí, J.A., Pozo, E. & Maraver, F. (2010) Mobility of elements in interaction between artificial sweat and peloids used in Spanish spas. Applied Clay Science, 48, 506–515.Google Scholar
Codish, S., Abu-Shakra, M., Flusser, D., Friger, M. & Sukenik, S. (2005) Mud compress therapy for the hands of patients with rheumatoid arthritis. Rheumatology International, 25, 49–54.Google Scholar
European Community Directive (76/768/ECC). COUNCIL DIRECTIVE of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products.Google Scholar
European Medicines Agency (2008) Guideline on the Specification Limits for Residual Metal Catalysts for Metal Reagents. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003586.pdf (Accessed November 2011).Google Scholar
European Pharmacopeia 4th Edition (2002) European Pharmacopeia Convention, Strasbourg, France.Google Scholar
Evcik, D., Kavuncu, V., Yeter, A. & Yigit, I. (2007) The efficacy of balneotherapy and mudpack therapy in patients with knee osteoarthritis. Joint Bone Spine, 74, 60–65.Google Scholar
Ferrand, T. & Yvon, J. (1991) Thermal properties of clay pastes for pelotherapy. Applied Clay Science, 6, 21–38.Google Scholar
Galhano, C., Rocha, F. & Gomes, C. (1999) Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the “Clays Aveiro” formation (Portugal). Clay Minerals, 34, 109–116.Google Scholar
Galzigna, L., Lalli, A., Moretto, C. & Bettero, A. (1995) Maturation of thermal mud controlled conditions and identification of an anti-inflammatory fraction. Journal of Physical and Rehabilitation Medicine, 5, 196–199.Google Scholar
Galzigna, L., Ceschi-Berrini, C., Moschin, E. & Tolomio, C. (1998) Thermal mud-pack as anti-inflammatory treatment. Biomedicine & Pharmacotherapy, 52, 408–409.CrossRefGoogle ScholarPubMed
Galzigna, L., Bettero, A. & Bellometti, S. (1999) La maturation de la boue thermal et sa mesure (Deuxième partie). Presse thermale et climatique, 136, 27–30.Google Scholar
Gámiz, E., Martín-Garcia, J.M., Fernández-González, M.V., Delgado, G. & Delgado, R. (2009) Influence of water type and maturation time on the properties of kaolinite–saponite peloids. Applied Clay Science, 46, 117–23.Google Scholar
Gomes, C. (1988) Argilas: o que sãe para que servem. Fundação Calouste Gulbenkian. Lisboa.Google Scholar
Gomes, C. (2002) Argilas, Aplicaçõs na Indústria. O Liberal, Empresa de Artes Gráficas, Lda. Aveiro.Google Scholar
Gomes, C. & Silva, J. (2007) Minerals and clay minerals in medical geology. Applied Clay Science, 36, 4–21.CrossRefGoogle Scholar
Grabowska-Olszewska, B. (1998) Geologia stosowana. Wlaściwości gruntów nienasyconych. Wyd. Naukowe PWN, Warszawa.Google Scholar
Health, Canada (2009) Draft Guidance on Heavy Metal Impurities and Cosmetics. Available at: http://www.hc-sc.gc.ca/cps-spc/legislation/consultation/_cosmet/metal-metaux-consult-eng.php (Accessed November 2011).Google Scholar
IARC Summaries and Evaluation (1997) Silica. Monographs on the Evaluation of Carcinogenic Risks to Humans, 68. IARC Scientific Publications, Lyon, France.Google Scholar
Karakaya, M.C., Karakaya, N., Sariolan, S. & Koral, M. (2010) Some properties of thermal muds of some spas in Turkey. Applied Clay Science, 48, 531–537.Google Scholar
Klee, S., Farwick, M. & Lersch, P. (2009) Triggered release of sensitive active ingredients upon response to the skin's natural pH. Colloids and surfaces A: Physicochemical and Engineering Aspects, 338, 162–166.Google Scholar
Legido, J., Medina, C., Mourelle, M., Carretero, M. & Pozo, M. (2007) Comparative study of the cooling rates of bentonite, sepiolite and common clays for their use in pelotherapy. Applied Clay Science, 36, 148–160.Google Scholar
Lehninger, A., Nelson, D.L. & Cox, M.M. (2004) Principles of Biochemistry. W.H. Freeman and Company, New York, USA.Google Scholar
Lindh, U. (2005) Biological functions of the elements. Pp. 115–160 in: Essentials of Medical Geology (Selinus, O., Alloway, B., Centeno, A.A., Finkelman, R.B., Fuge, R., Lindh, U., & Smedley, P., editors). Elsevier Academic Press, UK.Google Scholar
López-Galindo, A., Viseras, C. & Cerezo, P. (2007) Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 51–63.Google Scholar
Manic, G., Petrovic, S., Vesna, M., Popovic, D. & Todorovic, D. (2006) Radon concentrations in a spa in Serbia. Environment International, 32, 533–537.Google Scholar
Mazzula, S., Chimenti, R., Sesti, S., De Stefano, S., Morrone, M. & Martino, G. (2004) Effetto delle Bioglee solfuree su lesioni psoriasiche. Clinica Termale, 155, 499–504.Google Scholar
Mellinger, R.M. (1979) Quantitative X-ray Diffraction Analysis of Clay Minerals. An Evaluation. Saskatchenwan Research Council, Canada, SRC Report G-79:1–46.Google Scholar
Nasermoaddeli, A. & Kagamimori, S. (2005) Balneotherapy in medicine: A review. Environmental Health and Preventive Medicine, 10, 171–179.Google Scholar
Neubold, H.B., Sennett, P. & Morris, H.H. (1982) Abrasiveness of pigments and extenders. Technical Association of the Pulp and Paper Industry Journal, 90–93.Google Scholar
Oliveira, A., Rocha, F., Rodrigues, A., Jouanneau, J., Dias, A., Weber, O. & Gomes, C (2002) Clay minerals from the sedimentary cover from the Northwest Iberian shelf. Progress in Oceanography, 52, 233–247.Google Scholar
Poensin, D., Carpentier, P., Féchoz, C. & Gasparini, S. (2003) Effects of mud pack treatment on skin microcirculation. Joint Bone Spine, 70, 367–370.CrossRefGoogle ScholarPubMed
Queneau, P., Boulangé, M., Francon, A., Graber-Duvernay, B., La Roche, C., Oudot, J. & Roques, C. (2000) Médecine Thermale. Ed. Masson, Paris.Google Scholar
Quintela, A., Terroso, D., Almeida, S.F.P., Reis, P., Moura, A., Correia, A., Ferreira Da Silva, E., Forjaz, V. & Rocha, F. (2010) Geochemical and microbiological characterization of some Azorean volcanic muds after maturation. Research Journal of Chemistry and Environment, 14, 66–74.Google Scholar
Rebelo, M., Rocha, F. & Ferreira da Silva, E. (2010a) Mineralogical and physicochemical characterization of selected Portuguese Mesozoic–Cenozoic muddy/ clayey raw materials to be potentially used as healing clays. Clay Minerals, 45, 229–240.Google Scholar
Rebelo, M., Viseras, C., López-Galindo, A., Rocha, F. & Ferreira da Silva, E. (2010b) Characterization of Portuguese geological materials to be used in medical hydrology. Applied Clay Science, 51, 258–266.Google Scholar
Rebelo, M., Viseras, C., López-Galindo, A., Rocha, F. & Ferreira da Silva, E. (2011) Rheological and thermal characterization of peloids made of selected Portuguese geological materials. Applied Clay Science, 52, 219–227.Google Scholar
Sanchez, C., Parras, J. & Carretero, M. (2002) The effect of maturation upon the mineralogical and physicochemical properties of illitic-smectitic clays for pelotherapy. Clay Minerals, 37, 457–463.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. US Geological Survey Professional Paper, 39, 1–31.Google Scholar
Silva, P.S., Oliveira, S.M.B., Farias, L., Fávaro, D. & Mazzilli, B. (2011) Chemical and radiological characterization of clay minerals used in pharmaceutics and cosmetics. Applied Clay Science, 52, 145–149.Google Scholar
Sukenik, S., Buskila, D., Neumann, L., Kleiner-Baumgarten, A., Zimlichman, R.S. & Horowitz, J. (1990) Sulphur bath and mud pack treatment for rheumatoid arthritis at the Dead Sea area. Annals Rheumatic Diseases, 49, 99–102.CrossRefGoogle ScholarPubMed
Summa, V. & Tateo, F. (1998) The use of pelitic raw materials in thermal centres: Mineralogy, geochemistry, grain size and leaching tests. Examples from the Lucania area (Southern Italy). Applied Clay Science, 12, 403–417.Google Scholar
Tateo, F., Ravaglioli, A., Andreoli, C., Bonina, F., Coiro, V., Degetto, S., Giaretta, A., Menconi Orsini, A., Puglia, C. & Summa, V. (2009) The in-vitro percutaneous migration of chemical elements from a thermal mud for healing use. Applied Clay Science, 44, 83–94.Google Scholar
Terroso, D., Rocha, F., Ferreira da Silva, E., Patinha, C., Forjaz, V. & Santos, A. (2006) Chemical and physical characterization of mud/clay from Sãa Miguel and Terceira islands (Azores, Portugal) and possible application in pelotherapy. Metal Ions in Biology and Medicine, 9, 8592.Google Scholar
Thorez, J. (1976) Practical Identification of Clay Minerals: a Handbook for Teachers and Students in Clay Mineralogy. Belgium State University Press, Dison, Lelotte.Google Scholar
Tolomio, C., Ceschi-Berrini, C., Appolonia, F., Galzigna, L., Masiero, L., Moro, I. & Moschin, E. (2002) Diatoms in the thermal mud of Abano Terme, Italy (Maturation period). Algological Studies, 105, 11–27.Google Scholar
Tolomio, C., Appolonia, F., Moro, I. & Ceschi Berrini, C. (2004) Thermophilic microalgae growth on different substrates and at different temperatures in experimental tanks in Abano Terme (Italy). Algological Studies, 111, 145–157.Google Scholar
US Pharmacopeia 29-NF 24 (2006) US Pharmacopeial Convention, Rockville, MD.Google Scholar
Veniale, F., Setti, M., Soggetti, F., Lofrano, M. & Troilo, F. (1999) Esperimenti di maturazione di geomateriali argillosi con acqua sulfurea e salso-bromo-iodica per la preparazione di fanghi peloidi termali e per trattamenti dermatologici. Mineralogica Petrographica Acta, 42, 267–275.Google Scholar
Veniale, F., Barberis, E., Carcangiu, G., Morandi, N., Setti, M., Tamanini, M. & Tessier, D. (2004) Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Applied Clay Science, 25, 135–148.Google Scholar
Veniale, F., Bettero, A., Jobstraibizer, P. & Setti, M. (2007) Thermal muds: Perspectives of innovations. Applied Clay Science, 36, 141–147.Google Scholar