Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-25T07:37:06.591Z Has data issue: false hasContentIssue false

Calcium-zinc and calcium-cadmium exchange in suspensions of various types of clays

Published online by Cambridge University Press:  09 July 2018

R. van Bladel
Affiliation:
Unité des Sciences du Sol
H. Halen
Affiliation:
Unité des Sciences du Sol
P. Cloos
Affiliation:
Unité de Catalyse et Chimie des Matérieux Divisés, Université Catholique de Louvain, Place Croix du Sud 2, 1348 Louvain-la-Neuve, Belgium

Abstract

Calcium-cadmium and calcium-zinc exchange equilibria were studied at 20°C and constant ionic strength (0·015) on four clay minerals, viz. montmorillonite, bentonite, illite and vermiculite. Vermiculite and, to a lesser extent, illite and bentonite showed the strongest affinity for Cd2+ or Zn2+ over Ca2+ ions, whereas on the Camp Berteau montmorillonite nearly nonpreferential exchange isotherms were observed. With this one exception, selectivity for the heavy metals was greatly enhanced in the trace Cd or Zn regions, suggesting the presence of specific adsorption sites in these clays. Generally, the adsorption increased with the polarizing power of the exchangeable cation. Thermodynamic equilibrium constants and standard free energy changes for the complete exchange of Ca-clay to Cd- or Zn-clay were calculated.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dowdy, R.H., Larson, J.J. & Laherell, W.E. (1978) Growth and met al uptake of snap beans grown on sewage sludge amended soils: a four year study. J. Environ. Qual. 7, 252257.CrossRefGoogle Scholar
Egozy, Y. (1980) Adsorption of cadmium and cobalt on montmorillonite as a function of solution composition. Clays Clay Miner. 28, 311318.CrossRefGoogle Scholar
Gaines, G.L. & Thomas, H.C. (1953) Adsorption studies on clay minerals. II. A formulation of thermodynamics of exchange adsorption. J. Chem. Phys. 21, 714718.Google Scholar
Garcia-Miragaya, J. & Page, A.L. (1977) Influence of exchangeable cation on the sorption of trace amounts of cadmium by montmorillonite. Soil Sci. Soc. Am. J. 41, 718721.Google Scholar
Godfrin, J.M. & Van Beadle, R. (1990) Influence du pH sur l'adsorption du cuivre et du zinc par les sols. Sci. Sol 28, 1526.Google Scholar
Goderin, J.M., Cloos, P. & Van Beadle, R. (1989) Séctivité Des échanges ioniques Ca-Cu et Ca-Zn dans quelques sols belges. Pédologie 39, 89110.Google Scholar
Greene-Kelly, R. (1955) Dehydration of the montmorillonite minerals. Mineral. Mag. 30, 604615.Google Scholar
Grim, R.E. (1968) Clay Mineralogy, pp. 51-125. McGraw Hill, New York.Google Scholar
Halen, H. & Van Beadle, R. (1990) Etude des facteurs controlant l'adsorption du cadmium dans une série de sols helges. Revue de l'Agriculture 43, 934948.Google Scholar
Halen, H., Van Beadle, R. & Cloos, P. (1991) Relations pH-adsorption du cuivre, Du zinc et du cadmium pour quelques sols et minéraux argileux. Pédologie 41, 4757.Google Scholar
Hirsch, D., Nir, S. & Banin, A. (1989) Prediction of cadmium complexation in solution and adsorption to montmorillonite. Soil Sci. Soc. Am. J. 53, 716721.Google Scholar
Lindsay, W.L. Chemical Equilibria in Soils, J. Wiley & Sons, New York.Google Scholar
Moreale, A. & Van Beadle, R. (1979) Adsorption of herbicide-derived anilines in dilute aqueous montmorillonite suspensions. Clay Miner. 14, 111.Google Scholar
Sposlto, G. (1984) The Surface Chemistry of Soils, Oxford Univ. Press, Oxford.Google Scholar