Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-05T15:40:11.990Z Has data issue: false hasContentIssue false

Application of model-free kinetic analysis methods to dehydration of a HEU-type zeolite rich tuff from Turkey

Published online by Cambridge University Press:  02 January 2018

Güler Narin*
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, Usak University, Usak 64200, Turkey

Abstract

Non-isothermal dehydration kinetics of a heulandite-type zeolite-rich tuff from Turkey was investigated using thermogravimetric data recorded at three different heating rates (5, 10 and 20°C/min) under nitrogen flow. Isoconversional model-free methods gave a constant activation energy over the temperature range 30–200°C suggesting that the dehydration is a single-step process within this temperature range. The apparent activation energy was determined as: 34.54±1.18, 30.99±1.14 and 27.79±1.42 kJ/mol by the Flynn–Wall–Ozawa, the Kissinger–Akahira–Sunose and the Friedman methods, respectively. The activation energy values determined were less than the activation energy for vaporization of bulk water, indicating control of the dehydration rate by diffusion of water within this temperature range.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzal, M., Yasmeen, G., Saleem, M., Butt, P.K., Khattak, A.K. & Afzal, J. (2000) TG and DTA study of the thermal dehydration of metal-exchanged zeolite-4A samples. Journal of Thermal Analysis and Calorimetry, 62, 721727.Google Scholar
Akahira, T. & Sunose, T. (1971) Method of determining activation deterioration constant of electrical insulating materials. Research Report of Chiba Institute Technology, 16, 2231.Google Scholar
Alberti, A. & Vezzalini, G. (1983) The thermal behavior of heulandites: A structural study of the dehydration of the Nadap heulandite. Tschermaks Mineralogische und Petrographische Mitteilungen, 31, 259270.CrossRefGoogle Scholar
Alberti, A. & Vezzalini, G. (1984) Topological changes in dehydrated zeolites: breaking of T–O–T oxygen bridges. Pp. 834–841 in: Proceedings of the Sixth International Zeolite Conference (D. Olson & A. Bisio, editors). Reno, Butterworth, Guildford, UK.Google Scholar
Alietti, A., Brigatti, M.F. & Poppi, L. (1975) The differential thermal and thermogravimetric behavior of minerals of the heulandite group. Rendiconti della Societa Italiana di Mineralogia e Petrologia, 31, 613630.Google Scholar
Arcoya, A., Gonzalez, J.A., Llabre G, Seoane, X.L. & Travieso, N. (1996) Role of the countercations on the molecular sieve properties of a clinoptilolite. Microporous Materials, 7, 113.Google Scholar
Armbruster, T. & Gunter, M.E. (1991) Stepwise dehydration of heulandite-clinoptilolite from Succor Creek, Oregon, USA: A single-crystal X-ray study at 100 K. American Mineralogist, 76, 18721883.Google Scholar
Armbruster, T. (1993) Dehydration mechanism of clinoptilolite and heulandite: Single-crystal X-ray study of Na-poor Ca-, K-, Mg-rich clinoptilolite at 100 K. American Mineralogist, 78, 260264.Google Scholar
Ataman, G. (1997) Formation of zeolites in Western Anatolia. Yer Bilimleri, 3, 8594 (in Turkish).Google Scholar
Baerlocher, Ch., Meier, W.M. & Olson, D.H. (2001) Atlas of Zeolite Framework Types. Elsevier, Amsterdam.Google Scholar
Barrer, R.M. (1971) Intracrystalline diffusion. Pp. 1–36 in: Molecular Sieve Zeolites – II (E. Flanigen & L.B. Sand, editors). Advances in Chemistry, American Chemical Society, Washington D.C. Google Scholar
Bertsch, L. & Habgood, H.W. (1963) An infrared spectroscopic study of the adsorption of water and carbon dioxide by Linde molecular sieve X1. Journal of Physical Chemistry, 67, 16211628.Google Scholar
Bish, D.L. (1984) Effects of exchangeable cation composition on the thermal expansion/ contraction of clinoptilolite. Clays and Clay Minerals, 32, 444452.Google Scholar
Bish, D.L. (1988) Effects of composition on the dehydration behaviour of clinoptilolite and heulandite. Pp. 565–576 in: Occurrence, Properties, and Utilization of Natural Zeolites (D. Kallo & H.S. Sherry, editors). Akademiai Kiado, Budapest.Google Scholar
Bish, D.L. (1995) Thermal behavior of natural zeolite. 259–269 in: Natural Zeolites ’93 (D.W. Ming & F.A. Mumpton, editors). International Committee on Natural Zeolites, Brockport, New York.Google Scholar
Bish, D.L. & Carey, J.W. (2001) Thermal behavior of natural zeolites. Pp. 403–452 in: Natural Zeolites: Occurrence, Properties, Applications (D.L. Bish and D.W. Ming, editors). Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Breger, I.A., Chandler, J.C. & Zubovic, P. (1970) An infrared study of water in heulandite and clinoptilolite. American Mineralogist, 55, 825840.Google Scholar
Brown, M.E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A., Opfermann, J., Strey, R., Anderson, H.L., Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H.O., Li, C.R., Tang, T.B., Roduit, B., Malek, J. & Mitsuhashi, T. (2000) Computational aspects of kinetic analysis. Part A: The ICTAC kinetics project-data, methods and results. Thermochimica Acta, 355, 125143.Google Scholar
Carey, J.W. & Bish, D.L. (1996) Equilibrium in the clinoptilolite-H2O system. American Mineralogist, 81, 952962.CrossRefGoogle Scholar
Carey, J.W. & Bish, D.L. (1997) Calorimetric measurement of the enthalpy of hydration of clinoptilolite. Clays and Clay Minerals, 45, 826833.CrossRefGoogle Scholar
Casado, L., Mallada, R., Téllez, C., Coronas, J., Menéndez, M. & Santamaria, J. (2003) Preparation, characterization and pervaporation performance of mordenite membranes. Journal of Membrane Science, 216, 135147.Google Scholar
Castaldi, P., Santona, L., Cozza, C., Giuliano, V., Abbruzzese, C., Nastro, V. & Melis, P. (2005) Thermal and spectroscopic studies of zeolites exchanged with metal cations. Journal of Molecular Structure, 734, 99105.CrossRefGoogle Scholar
Coats, A.W. & Redfern, J.P. (1964) Kinetic parameters from thermogravimetric data. Nature, 201, 6869.CrossRefGoogle Scholar
Cruciani, G. (2006) Zeolites upon heating: Factors governing their thermal stability and structural changes. Journal of Physics and Chemistry of Solids, 67, 19731994.Google Scholar
Çakıcıoğlu-Özkan, F. & Ülkü, S. (2008) Diffusion mechanism of water vapor in a zeolitic tuff rich in clinoptilolite. Journal of Thermal Analysis and Calorimetry, 94, 699702.CrossRefGoogle Scholar
Dondur, V., Vucelić, V., Vucelić, D. & Susić, M. (1976) An analysis of elementary processes of water desorption from zeolites of type A. Part II. Zeolites with bivalent counterions. Thermochimica Acta, 14, 349356.Google Scholar
Dondur, V. & Vučelić, D. (1983a) An approach to the kinetics of water desorption from A-zeolites. Part I. Isothermal and non-isothermal desorption. Thermochimica Acta, 68, 9199.Google Scholar
Dondur, V. & Vučelić, D. (1983b) An approach to the kinetics of water desorption from A-zeolites. Part III. Thermodesorption of complexes with non-uniform activation energies. Thermochimica Acta, 68, 113119.Google Scholar
Doyle, C.D. (1962) Estimating isothermal life from thermogravimetric data. Journal of Applied Polymer Science, 6, 639642.Google Scholar
Esenli, F. (1992) Geological, mineralogical, and geochemical investigation of Neogene series and zeolitization in the vicinity of Gordes. Ph.D. dissertation, Istanbul Technical University, Turkey.Google Scholar
Esenli, F. & Kumbasar, I. (1994) Thermal behavior of heulandites and clinoptilolites of Western Anatolia. Studies in Surface Science and Catalysis, 84, 645651.Google Scholar
Esposito, S., Marocco, A., Dell’Agli, G., De Gennaro, B. & Pansini, M. (2015) Relationships between the water content of zeolites and their cation population. Microporous and Mesoporous Materials, 202, 3643.Google Scholar
Flynn, J.H. & Wall, L.A. (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4, 323328.Google Scholar
Földvári, M. (2011) Handbook of thermogravimetric system of minerals and its use in geological practice. Occasional Papers of the Geological Institute of Hungary, vol. 213, Geological Institute of Hungary, Budapest.Google Scholar
Friedman, H.L. (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry, Application to phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia, 6, 183195.Google Scholar
Galwey, A.K. (2003) What is meant by the term ‘variable activation energy’ when applied in the kinetic analyses of solid state decompositions (crystolysis reactions)? Thermochimica Acta, 397, 249268.Google Scholar
Garcia-Basabe, Y., Rodriguez-Iznaga, I., de Menorval, L.-C., Llewellyn, P., Maurin, G., Lewis, D.W., Binions, R., Autie, M. & Ruiz-Salvador, A.R. (2010) Step-wise dealumination of natural clinoptilolite: Structural and physicochemical characterization. Microporous and Mesoporous Materials, 135, 187196.CrossRefGoogle Scholar
Gottardi, G. & Galli, E. (1985) Natural Zeolites, Springer, Berlin.Google Scholar
Johnson, M., O’Connor, D., Barnes, P., Catlow, C.R.A., Owens, S.L., Sankar, G., Bell, R., Teat, S.J. & Stephenson, R. (2003) Cation exchange, dehydration, and calcination in clinoptilolite: in situ X-ray diffraction and computer modelling. Journal of Physical Chemistry B, 107, 942951.Google Scholar
Joshi, U.D., Joshi, P.N., Tamhankar, S.S., Joshi, V.P., Idage, B.B., Joshi, V.V. & Shiralkar, V.P. (2002) Influence of the size of extraframework monovalent cations in X-type zeolite on their thermal behaviour. Thermochimica Acta, 387, 121130.Google Scholar
Kappert, E.J., Bouwmeester, H.J.M., Benes, N.E. & Nijmeijer, A. (2014) Kinetic analysis of the thermal processing of silica and organosilica. Journal of Physical Chemistry B, 118, 52705277.CrossRefGoogle ScholarPubMed
Khobaer, T.M., Kuribayashi, T., Komatsu, K. & Kudoh, Y. (2008) The partially dehydrated structure of natural heulandite: An in situ high temperature single crystal X-ray diffraction study. Journal of Mineralogical and Petrological Sciences, 103, 6176.CrossRefGoogle Scholar
Kissinger, H.E. (1956) Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57, 217221.Google Scholar
Knowlton, G.D., White, T.R. & McKague, H.L. (1981) Thermal study of types of water associated with clinoptilolite. Clays and Clay Minerals, 29, 403411.Google Scholar
Korkuna, O., Leboda, R., Skubiszewska-Zieba, J., Vrublevska, T., Gun’ko, V.M. & Ryczkowski, J. (2006) Structural and physicochemical properties of natural zeolites: Clinoptilolite and mordenite. Microporous and Mesoporous Materials, 87, 243254.CrossRefGoogle Scholar
Kulkarni, S.J. & Kulkarni, S.B. (1982) Kinetic study of the dehydration of modified Y zeolites. Thermochimica Acta, 54, 251256.Google Scholar
Li, X., Li, Z., Xia, Q. & Xi, H. (2007) Effects of pore sizes of porous silica gels on desorption activation energy of water vapour. Applied Thermal Engineering, 27, 869876.Google Scholar
Majchrzak-Kuceba, I. & Nowak, W. (2004) Application of model-free kinetics to the study of dehydration of fly ash-based zeolite. Thermochimica Acta, 413, 2329.Google Scholar
Mumpton, F. (1960) Clinoptilolite redefined. American Mineralogist, 45, 351369.Google Scholar
Nakamura, T., Ishikawa, M., Hiraiwa, T. & Sato, J. (1992) X-Ray diffractometric determination of clinoptilolite in zeolite tuff using multiple analytical lines. Analytical Sciences, 8, 539543.CrossRefGoogle Scholar
Narin, G., Balköse, D. & Ülkü S. (2011) Characterization and dehydration behaviour of a natural, ammonium hydroxide and thermally treated zeolitic tuff. Drying Technology, 29, 553565.Google Scholar
O’Connor, D., Barnes, P., Bates, D.R. & Lander, D.F. (1998) A hydration-controlled nano-valve in a zeolite? Chemical Communications, 2527–2528.Google Scholar
Ozawa, T. (1965) A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38, 18811886.Google Scholar
Petrov, O.E. (1995) Cation exchange in clinoptilolite: An X-ray powder diffraction analysis. Pp. 271–279 in: Natural Zeolites ’93 (D.W. Ming & F.A. Mumpton, editors). International Committee on Natural Zeolites, Brockport, New York.Google Scholar
Prado, J.R. & Vyazovkin, S. (2011) Activation energies of water vaporization from the bulk and from laponite, montmorillonite and chitosan powders. Thermochimica Acta, 524, 197201.Google Scholar
Puziewicz, J. & Johannes, W. (1990) Experimental study of a biotite-bearing granitic system under watersaturated and water-undersaturated conditions. Contributions to Mineralogy and Petrology, 104, 397406.Google Scholar
Rodriguez-Iznaga, I., Gomez, A., Rodriguez-Fuentes, G., Benitez-Aguilar, A. & Serrano-Ballan, J., (2002) Natural clinoptilolite as an exchanger of Ni2+ and NH4 + ions under hydrothermal conditions and high ammonia concentration. Microporous and Mesoporous Materials, 53, 7180.CrossRefGoogle Scholar
Ruthven, D.M. (1984) Principles of Adsorption & Adsorption Processes. John Wiley & Sons, New York.Google Scholar
Shepard, A.O. & Starkey, H.C. (1966) The effects of exchanged cations on the thermal behaviour of heulandite and clinoptilolite. Mineralogical Society of India, International Mineralogical Association, 155–158.Google Scholar
Simo, M., Sivashanmugam, S., Brown, C.J. & Hlavacek, V. (2009) Adsorption/ desorption of water and ethanol on 3A zeolite in near-adiabatic fixed bed. Industrial & Engineering Chemistry, 48, 92479260.CrossRefGoogle Scholar
Sircar, S. & Myers, A.L. (2003) Gas Separation by Zeolites. Chapter 22 in: Handbook of Zeolite Science and Technology (S.M. Auerbach, K.A. Carrado, P.K. Dutta, editors). CRC Press, New York.Google Scholar
Solmus–, I., Kaftanoğlu, B., Yamalı, C. & Baker, D. (2011) Experimental investigation of a natural zeolite–water adsorption cooling unit. Applied Energy, 88, 42064213.Google Scholar
Stakebake, J.L. (1984) Characterization of natural chabazite and 5A synthetic zeolites: Part I. Thermal and outgassing properties. Journal of Colloid and Interface Science, 99, 4149.Google Scholar
Steinfeld, J.I., Francisco, J.S. & Hase, W.L. (1999) Chemical Kinetics and Dynamics. Prentice-Hall, New Jersey.Google Scholar
Tian, Y., Zhang, M. & Dong, X. (2004) Adsorption and diffusion equilibrium of water on 3A molecular sieve. Shiyou Huagong, 33, 932936.Google Scholar
Tsitsishvilli, G.V., Andronikashvilli, T.G., Filizova, L.D. & Kirov, G.N. (1992) Natural Zeolites. Ellis Horwood, Chichester, UK.Google Scholar
Uzunova, E.L. & Mikosch, H. (2013) Cation site preference in zeolite clinoptilolite: A density functional study, Microporous and Mesoporous Materials, 177, 113119.Google Scholar
Ülkü, S. (1986) Natural zeolites in energy storage and heat pumps. Studies in Surface Science and Catalysis, 28, 10471054.Google Scholar
Ülkü, S. & Mobedi, M. (1989) Zeolites in heat recovery. Studies in Surface Science and Catalysis, 49, 511518.Google Scholar
Ülkü, S. & Çakıcıoğlu, F. (1991) Energy recovery in drying applications. Renewable Energy, 1, 695698.Google Scholar
Ülkü, S. (1993) Novel application of adsorption: Energy recovery. Proceedings of the Fourth International Conference on Fundamentals of Adsorption, Fundamentals of Adsorption, Studies in Surface Science and Catalysis, 80, 685693.Google Scholar
van Reenwiijk, L.P. (1974) The thermal dehydration of natural zeolites. Mededelingen Landbouwhogeschool Wageningen, 174, 188.Google Scholar
Vucelić, V., Dondur, V., Djurdjević, P. & Vucelić, D. (1976) An analysis of elementary processes of water desorption from zeolites of type A. Thermochimica Acta, 14, 341347.Google Scholar
Yang, S., Lach-hab, M., Blaisten-Barojas, E., Li, X. & Karen, V.L. (2010) Machine learning study of the heulandite family of zeolites. Microporous and Mesoporous Materials, 130, 309313.Google Scholar
Yu, B.L., Dyer, A. & Enamy, H. (1992) A thermoanalytical study of the dehydration of NaA, MgNaA, CaNaA and SrNaA zeolites. Thermochimica Acta, 200, 299308.Google Scholar
Wendlandt, W.W. (1974) Thermal Methods of Analysis. Wiley, New York.Google Scholar