Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-24T01:38:57.806Z Has data issue: false hasContentIssue false

Anthropic acceleration of a natural clay mineral reaction in marshland soils (Atlantic Coast, France)

Published online by Cambridge University Press:  09 July 2018

V. Mathé*
Affiliation:
Centre Littoral de Géophysique, avenue M. Crépeau, 17042 La Rochelle cedex 01, France
A. Meunier
Affiliation:
Laboratoire HydrASA, CNRS-UMR 6532, 40 avenue du Recteur Pineau, 86022 Poitiers cedex, France
F. Lévêque
Affiliation:
Centre Littoral de Géophysique, avenue M. Crépeau, 17042 La Rochelle cedex 01, France
*

Abstract

Soil clay minerals in recent natural polders react on a human timescale in response to local environmental conditions. With increasing age, the mineral reaction leads to the dissolution of the chlorite component and a composition change of the different illite-smectite mixed-layer minerals (I-S MLMs): i.e. smectite layer content decreases and illite content increases. The process of oxidation, which is proven by magnetic susceptibility to trigger clay mineral reaction, changes the mineralogical composition of the sediment above the redox front. The mineral changes appear to be a non-linear function of time. In natural conditions the process lasts >1000 y. However, anthropoic forcing such as artificial drainage accelerates the oxidation reaction to complete the whole process in a few tens of years.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H., Peacor, D.R. & Coombs, D.S. (1988) Formation mechanism of illite, chlorite and mixed-layer illite-chlorite in Triassic volcanogenic sediments from Southland Syncline, New Zealand. Contributions to Mineralogy and Petrology, 99, 8289.Google Scholar
Baize, D. & Girard, M.C. (1995) Référentielpédologique. Collection ‘Techniques et Pratiques’. INRA Editions, Paris, France.Google Scholar
Charpentier, D., Mosser-Ruck, R., Cathelineau, M. & Guillaume, D. (2004) Oxidation of mudstone in a tunnel (Tournemire, France): consequences for the mineralogy and crystal chemistry of clay minerals. Clay Minerals, 39, 135149.Google Scholar
Drits, V.A., Lindgreen, H., Sakharov, B.A. & Salyn, A.S. (1997) Sequence structure transformation of illite-smectite-vermiculite during diagenesis of Upper Jurassic shales, North Sea. Clay Minerals, 33, 351371.CrossRefGoogle Scholar
Ducloux, J. (1989) Notice explicative de la carte pédologique de Fontenay-le-Comte (C-14). Service d’étude des sols, INRA, Orléans, France.Google Scholar
Faucherre, N. & Faux, E. (2003) Essai de cartographie d’un marais salant médiéval. Les salines de Voutron (Xe-XIe siècles). Roccafortis, 5, 133138.Google Scholar
Favre, F., Jaunet, A.M., Pernes, M., Badraoui, M., Boivin, P. & Tessier, D. (2004) Changes in clay organization due to structural iron reduction in a flooded vertisol. Clay Minerals, 39, 123134.Google Scholar
Fialips, C.-I., Huo, D., Yan, L., Wu, J. & Stucki, J.W. (2002) Infrared study of reduced and reduced-reoxidized ferruginous smectite. Clays and Clay Minerals, 50, 455469.Google Scholar
Lanson, B. (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals. Clays and Clay Minerals, 45, 132146.CrossRefGoogle Scholar
Lanson, B. & Besson, G. (1992) Characterization of the end of smectite-to-illite transformation: decomposition of X-ray patterns. Clays and Clays Minerals, 40, 4052.Google Scholar
Le Borgne, E. (1955) Susceptibilité magnétique anormale du sol superficiel. Annales de Géophysique, 11, 399419.Google Scholar
Lee, J.H., Peacor, D.R., Lewis, D.D. & Wintsch, R.P. (1984) Chlorite-illite/muscovite interlayered and interstratified crystals: a TEM/STEM study. Contributions to Mineralogy and Petrology, 88, 372385.Google Scholar
Maher, B.A. (1998) Magnetic properties of modern soils and quaternary loessic paleosols: Paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 137, 2554.Google Scholar
Mathé, V. & Lévêque, F. (2003) High resolution magnetic survey for soil monitoring: detection of drainage and soil tillage effects. Earth and Planetary Science Letters, 212, 241251.Google Scholar
Mathé, V. & Lévêque, F. (2005) Trace magnetic minerals to detect redox boundaries and drainage effects in a marshland soil in western France. European Journal of Soil Science, 56, 737751.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford.Google Scholar
Pons, Y., Capillon, A. & Cheverry, C. (2000) Water movement and stability of profiles in drained, clayey and swelling soils: at saturation, the structural stability determines the profile porosity. European Journal of Agronomy, 12, 269279.Google Scholar
Regrain, R. (1980) Géographie Physique et Télédétection des Marais Charentais. Paillart, Abbeville, France.Google Scholar
Reynolds, R.C. (1985) Description of program NEWMOD for the calculation of the one-dimensional X-ray diffraction patterns of mixed-layered clays. Hanover, New Hampshire, USA.Google Scholar
Righi, D., Velde, B. & Meunier, A. (1995) Clay stability in clay-dominated soil systems. Clay Minerals, 30, 4554.Google Scholar
Velde, B. & Church, T. (1999) Rapid clay transformations in Delaware salt marshes. Applied Geochemistry, 14, 559568.Google Scholar