Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T23:52:24.125Z Has data issue: false hasContentIssue false

Adsorption of atrazine and paraquat on montmorillonite loaded with layered double hydroxide and active site energy distribution analysis

Published online by Cambridge University Press:  19 February 2024

Rui Liu
Affiliation:
801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources (Shandong Provincial Geo-Mineral Engineering Exploration Institute), Jinan, China School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China
Chao Ma
Affiliation:
801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources (Shandong Provincial Geo-Mineral Engineering Exploration Institute), Jinan, China
Huanliang Chen
Affiliation:
801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources (Shandong Provincial Geo-Mineral Engineering Exploration Institute), Jinan, China
Changsuo Li*
Affiliation:
801 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources (Shandong Provincial Geo-Mineral Engineering Exploration Institute), Jinan, China
Lei Zuo
Affiliation:
School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China
Peng Zhang
Affiliation:
School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China
Yaqing Wang
Affiliation:
School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China
Ru Wang
Affiliation:
School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China
*
Corresponding author: Changsuo Li; Email: lics120@163.com

Abstract

Clay minerals are effective adsorbents for the remediation of pesticides in wastewater due to their large superficial areas and excellent cation-exchange capabilities. However, this adsorption effect can be reduced by the accumulation of adsorbents on clay minerals, amongst other problems. Therefore, in this study, montmorillonite (Mnt) modified by layered double hydroxide (LDH) with different loading amounts was successfully prepared using an in situ method. The results from X-ray diffraction, Fourier-transform infrared spectrometry, Brunauer–Emmet–Teller (BET) and scanning electron microscopy analyses revealed that LDH structures were successfully combined with the Mnt layer and formed a porous structure. However, excess LDH still caused the aggregation and accumulation of layers. The adsorption performance of LDH@Mnt for atrazine (ATZ) and paraquat (PQ) was investigated, and the removal efficiency of the LDH@Mnt composite was higher than those of Mnt and LDH alone. The kinetic study revealed that the adsorption process fitted the pseudo-second-order model and internal diffusion model, and 3-LDH@Mnt had the greatest absorbability efficiency for both ATZ and PQ, indicating the adsorption process was controlled by the number of active sites of the adsorbent. The generalized Langmuir model accurately characterized the adsorption process of ATZ and PQ elimination in the adsorption isotherm investigation, indicating that the adsorption energies of the active sites on the adsorbents were different. 3-LDH@Mnt had better absorbability performance for ATZ/PQ, and the sorption capacities were 7.03 and 91.9 mg g–1, respectively. According to site energy distribution theory, the amount of sorption sites of the composite adsorbent was large and the average adsorption energy was high, both of which being beneficial for the adsorption of ATZ and PQ. The effects of pH, coexisting anions and reuse experiments were also tested, indicating that the LDH@Mnt composite possessed high adsorption stability. This excellent removal performance represents a promising strategy for the remediation and elimination of pesticide contaminations from the environment.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Chunhui Zhou

References

Ajala, O.J., Nwosu, F.O. & Ahmed, R.K. (2018) Adsorption of atrazine from aqueous solution using unmodified and modified bentonite clays. Applied Water Science, 8, 214.CrossRefGoogle Scholar
Al Kausor, M., Sen Gupta, S., Bhattacharyya, K.G. & Chakrabortty, D. (2022) Montmorillonite and modified montmorillonite as adsorbents for removal of water soluble organic dyes: a review on current status of the art. Inorganic Chemistry Communications, 143, 109686.CrossRefGoogle Scholar
Alexe-Ionescu, A.L., Zaccagnini, P., Lamberti, A., Pirri, C.F. & Barbero, G. (2019) Generalized langmuir kinetic equation for ions adsorption model applied to electrical double layer capacitor. Electrochimica Acta, 323, 134700.CrossRefGoogle Scholar
Boutaleb, N., Chouli, F., Benyoucef, A., Zeggai, F.Z. & Bachari, K. (2021) A comparative study on surfactant cetyltrimethylammoniumbromide modified clay-based poly(p-anisidine) nanocomposites: synthesis, characterization, optical and electrochemical properties. Polymer Composites, 42, 16481658.CrossRefGoogle Scholar
Brigante, M. & Schulz, P.C. (2011) Adsorption of paraquat on mesoporous silica modified with titania: effects of pH, ionic strength and temperature. Journal of Colloid and Interface Science, 363, 355361.CrossRefGoogle ScholarPubMed
Buchanan, G.A. & Hiltbold, A.E. (2017) Performance and persistence of atrazine. Weed Science, 21, 413416.CrossRefGoogle Scholar
Centner, T.J. (2021) Pesticide usage is compromising people's health in the United States: ideas for reducing damages. Agriculture, 11, 486.CrossRefGoogle Scholar
Chen, L., Li, C., Wei, Y., Zhou, G., Pan, A., Wei, W. & Huang, B. (2016) Hollow LDH nanowires as excellent adsorbents for organic dye. Journal of Alloys and Compounds, 687, 499505.CrossRefGoogle Scholar
Chen, X., Zhou, Q., Liu, F., Peng, Q. & Teng, P. (2019) Removal of nine pesticide residues from water and soil by biosorption coupled with degradation on biosorbent immobilized laccase. Chemosphere, 233, 4956.CrossRefGoogle ScholarPubMed
Dabizha, A. & Kersten, M. (2022) Aqueous solubility of Zn incorporated into Mg–Al-layered double hydroxides. Clays and Clay Minerals, 70, 3447.CrossRefGoogle Scholar
Dehgani, Z., Sedghi asl, M., Ghaedi, M., Sabzehmeidani, M.M. & Adhami, E. (2020) Removal of paraquat from aqueous solutions by a bentonite modified zero-valent iron adsorbent. New Journal of Chemistry, 44, 1336813376.CrossRefGoogle Scholar
Durán, E., Bueno, S., Hermosín, M.C., Cox, L. & Gámiz, B. (2019) Optimizing a low added value bentonite as adsorbent material to remove pesticides from water. Science of the Total Environment, 672, 743751.CrossRefGoogle ScholarPubMed
Glaberman, S., Padilla, S. & Barron, M.G. (2017) Evaluating the zebrafish embryo toxicity test for pesticide hazard screening. Environmental Toxicology and Chemistry, 36, 12211226.CrossRefGoogle ScholarPubMed
Hernandes, P.T., Franco, D.S.P., Georgin, J., Salau, N.P.G. & Dotto, G.L. (2022) Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium. Journal of Environmental Chemical Engineering, 10, 107498.CrossRefGoogle Scholar
Huang, L., Wang, L., Wang, C. & Tao, X. (2022) Effect of intercalation of flocculant on adsorption properties of ZnMgAl-LDHs. Inorganic Chemistry Communications, 135, 109127.CrossRefGoogle Scholar
Iglesias, A., Lopez, R., Gondar, D., Antelo, J., Fiol, S. & Arce, F. (2010) Adsorption of paraquat on goethite and humic acid-coated goethite. Journal of Hazardous Materials, 183, 664668.CrossRefGoogle ScholarPubMed
Ionel, I.L., Mara, G., Stefania, R., Margarita, G.O. & Corina, P. (2019) A hazard to human health – pesticide residues in some vegetal and animal foodstuff. Journal of Biotechnology, 305, S22S23.CrossRefGoogle Scholar
la Cecilia, D. & Maggi, F. (2016) Kinetics of atrazine, deisopropylatrazine, and deethylatrazine soil biodecomposers. Journal of Environmental Management, 183, 673686.CrossRefGoogle ScholarPubMed
Li, X., Luo, J., Deng, H., Huang, P., Ge, C., Yu, H. & Xu, W. (2018) Effect of cassava waste biochar on sorption and release behavior of atrazine in soil. Science of the Total Environment, 644, 16171624.CrossRefGoogle ScholarPubMed
Liao, K., An, J., Fu, L., Zhang, H., Wei, M., Bai, J. & He, Y. (2022) Adsorption of welan gum on montmorillonite and its influencing factors. Polymers, 14, 2599.CrossRefGoogle ScholarPubMed
Liu, L., Zhang, Y.-J., Xia, Z.-Q., Li, S.-B. & Wang, N. (2022) Triple-shelled nico-LDH@CoFe-PBA@NiCo-LDH hollow cubes for efficient adsorption property toward anionic organic pollutant. Materials Letters, 312, 131647.CrossRefGoogle Scholar
Mandal, A., Singh, N. & Purakayastha, T.J. (2017) Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Science of the Total Environment, 577, 376385.CrossRefGoogle ScholarPubMed
Mennas, N., Lahreche, S., Chouli, F., Sabantina, L. & Benyoucef, A. (2023) Adsorption of Methylene Blue dye by cetyltrimethylammonium bromide intercalated polyaniline-functionalized montmorillonite clay nanocomposite: kinetics, isotherms, and mechanism study. Polymers, 15, 3518.CrossRefGoogle ScholarPubMed
Salvestrini, S., Sagliano, P., Iovino, P., Capasso, S. & Colella, C. (2010) Atrazine adsorption by acid-activated zeolite-rich tuffs. Applied Clay Science, 49, 330335.CrossRefGoogle Scholar
Semenkova, A.S., Evsiunina, M.V., Verma, P.K., Mohapatra, P.K., Petrov, V.G., Seregina, I.F. et al. (2018) Cs+ sorption onto kutch clays: influence of competing ions. Applied Clay Science, 166, 8893.CrossRefGoogle Scholar
Siddique, S., Chaudhry, M.N., Ahmad, S.R., Nazir, R., Zhao, Z., Javed, R. et al. (2023) Ecological and human health hazards; integrated risk assessment of organochlorine pesticides (OCPS) from the Chenab River, Pakistan. Science of the Total Environment, 882, 163504.CrossRefGoogle ScholarPubMed
Silva, D.T.C., Fonseca, M.G., Borrego-Sánchez, A., Soares, M.F.R., Viseras, C., Sainz-Díaz, C.I. & Soares-Sobrinho, J.L. (2020) Adsorption of tamoxifen on montmorillonite surface. Microporous and Mesoporous Materials, 297, 110012.CrossRefGoogle Scholar
Tao, X., Liu, D., Cong, W. & Huang, L. (2018) Controllable synthesis of starch-modified ZnMgAl-LDHs for adsorption property improvement. Applied Surface Science, 457, 572579.CrossRefGoogle Scholar
Tao, X., Liu, D., Song, J., Ye, Q. & Xu, D. (2017) Plasma modification of ZnMgAl-LDHs for adsorption property improvement. Journal of the Taiwan Institute of Chemical Engineers, 74, 281288.CrossRefGoogle Scholar
Tian, Y., Xie, J., Zhang, F., Xu, L. & Zhao, Z. (2023) Synthesis and lithium adsorption performance of NiFe2O4@AlLi-LDH. Journal of Sustainable Metallurgy, 9, 10751083.CrossRefGoogle Scholar
Tongur, T. & Ayranci, E. (2021) Adsorption and electrosorption of paraquat, diquat and difenzoquat from aqueous solutions onto activated carbon cloth as monitored by in-situ UV–visible spectroscopy. Journal of Environmental Chemical Engineering, 9, 105566.CrossRefGoogle Scholar
Tsai, W.T., Hsien, K.J., Chang, Y.M. & Lo, C.C. (2005) Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth. Bioresource Technology, 96, 657663.CrossRefGoogle ScholarPubMed
Uygun, O., Murat, A. & Çakal, G.Ö. (2023) Magnetic sepiolite/iron(III) oxide composite for the adsorption of lead(II) ions from aqueous solutions. Clay Minerals, 58, 267279.CrossRefGoogle Scholar
Valbuena, D., Cely-Santos, M. & Obregon, D. (2021) Agrochemical pesticide production, trade, and hazard: narrowing the information gap in Colombia. Journal of Environmental Management, 286, 112141.CrossRefGoogle ScholarPubMed
Vasseghian, Y., Arunkumar, P., Joo, S.-W., Gnanasekaran, L., Kamyab, H., Rajendran, S. et al. (2022) Metal–organic framework-enabled pesticides are an emerging tool for sustainable cleaner production and environmental hazard reduction. Journal of Cleaner Production, 373, 133966CrossRefGoogle Scholar
Wu, L., Sun, M., Wang, X., Lu, Y., Tang, N., Gao, L. et al. (2023) Preparation and corrosive anion-curing capability of layered double hydroxide (LDH)/montmorillonite composites. Clays and Clay Minerals, 71, 461477.CrossRefGoogle Scholar
Xia, C., Huang, H., Liang, D., Xie, Y., Kong, F., Yang, Q. et al. (2022) Adsorption of tetracycline hydrochloride on layered double hydroxide loaded carbon nanotubes and site energy distribution analysis. Chemical Engineering Journal, 443, 136398.CrossRefGoogle Scholar
Yue, L., Ge, C., Feng, D., Yu, H., Deng, H. & Fu, B. (2017) Adsorption–desorption behavior of atrazine on agricultural soils in China. Journal of Environmental Sciences, 57, 180189.CrossRefGoogle ScholarPubMed
Zheng, D., Wu, M., Zheng, E., Wang, Y., Feng, C., Zou, J. et al. (2022) Parallel adsorption of low concentrated ciprofloxacin by a CoFe-LDH modified sludge biochar. Journal of Environmental Chemical Engineering, 10, 108381.CrossRefGoogle Scholar
Supplementary material: File

Liu et al. supplementary material

Liu et al. supplementary material
Download Liu et al. supplementary material(File)
File 1.8 MB