Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-26T02:13:34.170Z Has data issue: false hasContentIssue false

Adsorption of alkylamines by a crystalline silicic acid

Published online by Cambridge University Press:  09 July 2018

J. Döring
Affiliation:
Institute of Inorganic Chemistry, Kiel University, Olshausenstraβe 40, D-2300 Kiel, Germany
G. Lagaly
Affiliation:
Institute of Inorganic Chemistry, Kiel University, Olshausenstraβe 40, D-2300 Kiel, Germany

Abstract

Amines are strongly adsorbed by the crystalline silica H4Si20O42·4H2O and are intercalated into the interlayer spaces. The adsorption of butyl-, hexyl-, octyl-, and decylamine from alcoholic solutions (ethanol, butanol…decanol) is competitive as both types of molecules, amines and alcohols, are adsorbed in the interlamellar space. The adsorption isotherms are presented as composite isotherms showing the specific reduced surface excess of amine, n°(n)/m, as a function of the molar fraction of amine in the equilibrium solution. These isotherms increase to a plateau-like section (n°(n)/m≈1·4 mmol/g) when the interlamellar adsorption is restricted to formation of monolayers of flat-lying molecules (in water, ethanol and butanol). In the presence of longer chain alcohols, the isotherms increase stepwise to a second "plateau" (at n1°(n)/m = 2·2-2·7 mmol/g) which corresponds to paraffin-type bilayers of amine and alcohol molecules. The composition of the adsorption phase is estimated from the specific reduced surface excess of amine on the basis of the interlamellar structure derived from basal spacing measurements.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrer, R.M., Papadopoulos, R. & Rees, L.V.C. (1967) Exchange of sodium in clinoptilolite by organic cations. J. Inorg. Nucl. Chem. 29, 20472063.Google Scholar
Beneke, K. & Lagaly, G. (1977) Peculiarities of intercalation reactions of the natural silicic acid silhydrite. Clay Miner. 12, 363365.Google Scholar
Beneke, K., Krvse, H.-H. & Lagaly, G. (1984) Eine kristalline Kieselsäiure mit hoher Einlagerungsfäihigkeit. Z. anorg, Allgem. Chem. 578, 6576.Google Scholar
Brandt, A., Schwleger, W. & Bergk, K.-H. (1987) A new model structure of sheet sodium (Na) silicate hydrates (Na-SH)—theoretical view based on known X-ray and NMR-measurements. Rev. Chimie minärale 24, 564571.Google Scholar
Critchfield, F.E. & Johnson, J.B. (1956) Reaction of carbon disulfide with primary and secondary aliphatic amines as an analytic tool. Anal. Chem. 28, 430436.Google Scholar
Därány, I., Szántó, F., Weiss, A. & Lagaly, G. (1985) Interlamellar liquid sorption on hydrophobic silicates. Ber. Bunsenges. Phys. Chem. 89, 6267.Google Scholar
Därány, I., Szántó, F., Welss, A. & Lagaly, G. (1986) Interactions of hydrophobic layer silicates with alcoholbenzene mixtures. I, Ii. Ber. Bunsenges. Phys. Chem. 90, 422427; 427-431.Google Scholar
Döring, J. (1991) Adsorption an kristallinen Kieselsäuren. Thesis, Kiel Univ., Germany.Google Scholar
Everett, D.H. (1986) Reporting data on adsorption from solution at the solid/solution interface. Pure Appl. Chem. 58, 967984.Google Scholar
Giles, C.H., Macewan, T.H., Nakhwa, S.N. & Smith, D. (1960) A system of classification of solution adsorption isotherms, And its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 3973-3993.Google Scholar
Heller, L. & Yariv, S. (1970) Anilinium montmorillonites and the formation of ammonium/amine associations. Israel J. Chem. 8, 391397.Google Scholar
Heller-Kallai, L., Yariv, S. & Rieuer, M. (1973) Effect of acidity on the sorption of histidine by montmorillonite. Proc. Int. Clay Conf. Madrid, 651-662.Google Scholar
Kipling, J.J. (1965) Adsorption from Solutions of Non-electrolytes. Academic Press, London-New York.Google Scholar
Lagaly, G. (1976) Kink-block and gauche-block structures of bimolecular films. Angew. Chem. Int. Ed. Engl. 15, 575586.Google Scholar
Lagalay, G. (1979) Crystalline silicic acids and their interface reactions. Adv. Coil. fnterf. Sci. 11, 105148.Google Scholar
Lagaly, G. & Witter, R. (1982) Clustering of liquid molecules on solid surfaces. Ber. Bunsenges. Phys. Chem. 86, 7480.CrossRefGoogle Scholar
Lagaly, G. & Beneke, K. (1991) Intercalation and exchange reactions of clay minerals and non-clay layer compounds. Coll. Polym. Sci. 269, 11981211.Google Scholar
Lagaly, G., Riekert, H.-M. & Kruse, H.-H. (1986) Crystalline silicic acids. Pp. 361-379 in: Chemical Reactions in Organic and Inorganic Constrained Systems (R. Setton, Editor). D. Reidel, Dordrecht.Google Scholar
Marosl, T., Dévány, I. & Lagaly, G. (1992) Displacement processes on hydrophilic/hydrophobic surfaces in methanol-water mixtures. Coll. Polym. Sci. 270, 10271034.Google Scholar
Mcclellan, A. L. & Harnsberger, H. F. (1967) Cross-sectional areas of molecules adsorbed on solid surfaces. J. Coll. Interf. Sci. 23, 577599.Google Scholar
Schwieger, W., Heveg, W., Wolf, F. & Bergk, K.-H. (1987) Zur Synthese von kristallinen Met allsilicathydraten mit Schichtstruktur. Z. anorg, Allgem. Chem. 548, 204216.Google Scholar
Wernerh, -J., Beneke, K. & Lagaly, G. (1980) Die Aciditäit kristalliner Kieselsäuren. Z. anorg, Allgem. Chem. 470, 118130.Google Scholar
Yariv, S., Heller, L. & Kaufherr, N. (1969) Effect of acidity in montmorillonite interlayers on the sorption of aniline derivatives. Clays Clay Miner. 17, 301308.Google Scholar
Yariv, S. & Heller, U. (1970) Sorption of cyclohexylamine by montmorillonites. Israel J. Chem. 8, 935945.Google Scholar
Yarw, S. & Hellek-Kallai, L. (1975) Comments on the paper: the adsorption of aromatic, Heterocyclic and cyclic cations by montmoriUonite. Clay Miner. 10, 479481.Google Scholar