Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T21:46:16.872Z Has data issue: false hasContentIssue false

XRD, IR and ESR study of experimental alteration of Al-nontronite into mixed-layer kaolinite/smectite

Published online by Cambridge University Press:  09 July 2018

B. Delvaux
Affiliation:
Unité CIFA, Faculté des Sciences Agronomiques, Université Catholique de Louvain, Place Croix du Sud, 1, 1348 Louvain-la-Neuve
M. M. Mestdagh
Affiliation:
Unité CIFA, Faculté des Sciences Agronomiques, Université Catholique de Louvain, Place Croix du Sud, 1, 1348 Louvain-la-Neuve
L. Vielvoye
Affiliation:
Section Physico-chimie, Musée Royal de l'Afrique Centrale, Place Croix du Sud, 1, 1348 Louvain-la-Neuve, Belgium
A. J. Herbillon
Affiliation:
Centre de Pédologie Biologique, UP 6831 du CNRS associée à l'Université de Nancy I, BP 5, 54501 Vandoeuvre-les-Nancy Cedex, France

Abstract

The formation of kaolinite from Al hydroxy interlayered Garfield nontronite has been carried out at 225°C in hydrothermal conditions. The kaolinitization process, which proceeds through mixed-layer kaolinite/smectite intermediates, was followed by XRD, IR and ESR spectroscopy, chemical analysis and charge properties. The smectite content of the clay products decreases regularly with the duration of the hydrothermal treatment. The CEC and the structural Fe content of the deferrated products show a similar trend. IR features specific to nontronite disappear and are barely detectable as the smectite content of the mixed-layer clay falls below 30%. In contrast, the ESR spectrum of nontronite is characterized by a broad g2 signal that remains even after prolonged hydrothermal treatment. The calibration of the g2 ESR signal, due to Fe-smectite, shows that the synthetic kaolinites have low Fe contents (∼ 1% Fe2O3) indicating that the kaolinitization process involves destruction of the 2:1 layers and the subsequent neoformation of kaolinite and Fe oxides. As illustrated by the study of deferrated soil clay samples, representing a weathering sequence Fe-smectite → kaolinite + Fe oxides, ESR spectroscopy proved to be a powerful Fe probe for detecting Fe-rich smectite in kaolinite/Fe-smectite mixed-layer clays.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, B.R., Jones, J.P.E. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinites I. Clay Miner., 10, 247–255.Google Scholar
Angel, B.R., Richard K. & Jones, J.P.E. (1975) The synthesis, morphology, and general properties of kaolinites specifically doped with metallic ions, and defects generated by irradiation. Proc. Int. Clay Conf. Mexico City,, 297304.Google Scholar
Barnhisel, R.I. & Rich, C.I. (1963) Gibbsite formation from aluminum-interlayers in montmorillonite. Soil Sci. Soc. Am. Proc., 27, 632–635.Google Scholar
Brigatti, M.F. (1983) Relationships between composition and structure in Fe-rich smectites. Clay Miner., 18, 177–186.CrossRefGoogle Scholar
Brindley, G.W., Kao, C.C., Harrison, J.L., Lipsicas M. & Raythatha R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner., 34, 239–249.Google Scholar
Brydon, J.E. & Kodama H. (1966) The nature of aluminum hydroxide-montmorillonite complexes. Am. Miner., 51, 875–889.Google Scholar
Cradwick, P.D. & Wilson, M.J. (1972) Calculated X-ray diffraction profiles for interstratified kaolinite- montmorillonite. Clay Miner., 9, 395–405.Google Scholar
Craig, D.C. & Loughnan, F.C. (1964) Chemical and mineralogical transformations accompanying the weathering of basic volcanic rocks from New South Wales. Aust. J. Soil Res., 2, 218–234.Google Scholar
De Endredy, A.S. (1963) Estimation of free iron oxides in soils and clays by a photolytic method. Clay Miner. Bull, 5, 209–217.CrossRefGoogle Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical Society, London.Google Scholar
Goodman, B.A., Nadeau, P.H. & Chadwick J. (1988) Evidence for the multiphase nature of bentonites from Mossbauer and EPR spectroscopy. Clay Miner., 23, 147–159.Google Scholar
Goodman, B.A., Russell, J.D. & Fraser, A.R. (1976) A Mossbauer and I.R. spectroscopic study of the structure of nontronite. Clays Clay Miner., 24, 53–59.CrossRefGoogle Scholar
Herbillon, A.J., Frankart R. & Vielvoye L. (1981) An occurrence of interstratified kaolinite-smectite minerals in a red-black soil toposequence. Clay Miner., 16, 195–201.Google Scholar
Herbillon, A.J., Mestdagh, M.M., Vielvoye L. & Derouane, E.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner., 11, 201–220.CrossRefGoogle Scholar
Jones, J.P.E., Angel, B.R. & Hall, P.L. (1974) Electron spin resonance studies of doped synthetic kaolinites II. Clay Miner., 10, 257–269.Google Scholar
Mackenzie, R.C. (1952) A micromethod for determination of cation exchange capacity of clays. Clay Miner. Bull, 1, 203–205.Google Scholar
Meads, R.E. & Malden, P.J. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner., 10, 313–345.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxides removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner., 7, 317–327.Google Scholar
Mendelovici, E., Yariv, Sh. & Villalba, R. (1979) Iron-bearing kaolinite in Venezuelan laterites: I. Infrared spectroscopy and chemical dissolution evidence. Clay Miner., 14, 323–331.CrossRefGoogle Scholar
Mestdagh, M.M., Vielvoye L. & Herbillon, A.J. (1980) Iron in kaolinites: II. The relationship between kaolinite cristallinity and iron content. Clay Miner., 15, 1–13.Google Scholar
Millot, G. (1964) Geologie des Argiles. Masson & Cie, Paris.Google Scholar
Muller, J.P., & Bocquier, G. (1987) Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon. Proc. Int. Clay Conf. Denver, 186194.Google Scholar
Norrish, K. & Pickering, J.G. (1983) Clay minerals. Pp. 281308 in: Soils: an Australian Viewpoint. Melbourne Academic Press, London.Google Scholar
Oberlin, A. & Couty R. (1970) Conditions of kaolinite formation during alteration of some silicates by water at 200°C. Clays Clay Miner., 18, 347456.CrossRefGoogle Scholar
Olivier, D., Vedrinh, J.C. & Pezerat, H. (1975) Application de la resonance paramagnetique electronique a la localisation du Fe3+ dans les smectites. Bull. Gr. frang. Argiles XXVII, 153165.Google Scholar
Petit, S., Decarreau, A., Eymery, J.P. & Thomassin, J.H. (1988) Synthese de kaolinites ferriques a 200°C. Comparaison avec les kaolinites d'altération supergène: teneur en fer, morphologie, cristallinité. C.R. Acad. Sc. Paris, T 307, série II, 19611966 Google Scholar
Poncelet, G.M. & Brindley, G.W. (1967) Experimental formation of kaolinite from montmorillonite at low temperature. Am. Miner., 52, 1161–1173.Google Scholar
Quantin, P., Herbillon, A.J., Janot, C. & Sieffermann, G. (1984) L"halloysite" blanche riche en fer de Vate (Vanuatu). Hypothese d'un edifice interstratifie halloysite-hisingerite. Clay Miner., 19, 629–643.CrossRefGoogle Scholar
Rodrique, L., Poncelet, G. & Herbillon, A.J. (1972) Importance of the silica subtraction process during the hydrothermal kaolinitization of amorphous silico-aluminas. Proc. Int. Clay Conf. Madrid,, 187197.Google Scholar
Rousseaux, J.M. (1978) Quantitative estimation of kaolinite in sediments by differential infrared spectroscopy. Clays Clay Miner., 26, 202–208.Google Scholar
Schultz, L.G., Shepard, A.O., Blackmon, P.D. & Starkey, H.C. (1971) Mixed-layer kaolinite- montmorillonite from the Yucatan peninsula, Mexico. Clays Clay Miner., 19, 137–150.Google Scholar
Serratosa, J.M. (1960) Dehydration studies by i.r. spectroscopy. Am. Miner., 45, 1101–1104.Google Scholar
Srodon, J. (1980a) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays Clay Miner., 28, 401–411.Google Scholar
Sroedon, J. (1980b) Synthesis of mixed-layer kaolinite/smectite. Clays Clay Miner., 6, 419–424.Google Scholar
Suquet, H., Malard, C. & Pezerat, H. (1987) Structure et proprietes d'hydratation des nontronites. Clay Miner., 22, 157–167.Google Scholar
Voinovitch, I.A., Debras-Guedon, J. & Louvrier, J. (1962) VAnalyse des Silicates, p. 160. Hermann, Paris.Google Scholar
Weismiller, R.A., Ahlrichs, J.L. & White, J.L. (1967) Infrared studies of hydroxy-aluminum interlayer material. Soil Sci. Soc. Am. Proc., 31, 459–463.Google Scholar
Wilson, M.J. (1987) Soil smectites and related interstratified minerals: recent developments. Proc. Int. Clay Conf. Denver,, 167173.Google Scholar
Yerima, B.P.K., Calhoun, F.G., Senkayi, A.L. & Dixon, J.B. (1985) Occurrence of interstratified kaolinite- smectite in El-Salvador vertisols. Soil Sci. Soc. Am. J., 49, 462–466.Google Scholar