Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T01:56:47.596Z Has data issue: false hasContentIssue false

Unique but diverse: some observations on the formation, structure and morphology of halloysite

Published online by Cambridge University Press:  02 January 2018

G. Jock Churchman*
Affiliation:
School of Agriculture, Food and Wine, University of Adelaide, Adelaide 5005, Australia
P. Pasbakhsh
Affiliation:
School of Engineering, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
D.J. Lowe
Affiliation:
School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand
B.K.G. Theng
Affiliation:
Landcare Research, Palmerston North 4442, New Zealand

Abstract

New insights from the recent literature are summarized and new data presented concerning the formation, structure and morphology of halloysite. Halloysite formation by weathering always requires the presence of water. Where substantial drying occurs, kaolinite is formed instead. Halloysite formation is favoured by a low pH. The octahedral sheet is positively charged at pH < ∼8, whereas the tetrahedral sheet is negatively charged at pH > ∼2. The opposing sheet charge would facilitate interlayer uptake of H2O molecules. When halloysite intercalates certain polar organic molecules, additional (hkl) reflections appear in the X-ray diffraction pattern, suggesting layer re-arrangement which, however, is dissimilar to that in kaolinite. Associated oxides and oxyhydroxides of Fe and Mn may limit the growth of halloysite particles as does incorporation of Fe into the structure. Particles of different shape and Fe content may occur within a given sample of halloysite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullayev, E. & Lvov, Y. (2013) Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release. Journal of Materials Chemistry B, 1, 28942903.10.1039/c3tb20059kCrossRefGoogle ScholarPubMed
Abdullayev, E. & Lvov, Y. (2015) Halloysite tubule nanoreactors in industrial and agricultural applica-tions. Pp. 363382 in: Natural Mineral Nanotubes (P. Pasbakhsh & G.J. Churchman, editors). Apple Academic Press, Oakville, Canada.10.1201/b18107-28Google Scholar
Adams, J.M. (1978) Unifying features relating to the 3D structures of some intercalates of kaolinite. Clays and Clay Minerals, 26, 291295.10.1346/CCMN.1978.0260406Google Scholar
Alexander, L.T., Faust, G.T., Hendricks, S.B., Insley, H. & McMurdie, H.F. (1943) Relationship of the clay minerals halloysite and endellite. American Mineralogist, 28, 118.Google Scholar
Allison, G.B. & Hughes, M.W. (1978) The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Australian Journal of Soil Research, 16, 181195.10.1071/SR9780181Google Scholar
Ames, L.L. & Sand, L.B. (1957) Halloysite formed in a calcareous hot spring environment. Clays and Clay Minerals, 6, 378385.10.1346/CCMN.1957.0060127Google Scholar
Anton, O. & Rouxhet, P.G. (1977) Note on the intercalation of kaolinite and halloysite by dimethyl-sulfoxide. Clays and Clay Minerals, 25, 259263.10.1346/CCMN.1977.0250402Google Scholar
Bailey, S.W. (1990) Halloysite: a critical assessment. Pp. 8998 in: Proceedings of the 9th International Clay Conference 1989 (V.C. Farmer & Y Tardy, editors). Sciences Géologiques, Mémoire 86, Strasbourg, France.Google Scholar
Barbetti, M. & Sheard, M.J. (1981) Palaeomagnetic measurements from Mounts Gambier and Schank, South Australia. Geological Society of Australia Journal, 28, 385394.10.1080/00167618108729177CrossRefGoogle Scholar
Berthier, P. (1826) Analyse de l'halloysite. Annales de Chimie et de Physique, 32, 332335.Google Scholar
Bordallo, H.N., Aldridge, L.P., Churchman, G.J., Gates, W.P., Telling, M.T.F., Kiefer, K., Fouquet, P., Seydel, T. & Kimber, S.A.J. (2008) Quasi-elastic neutron scattering studies on clay interlayer-space highlighting the effect of the cation in confined water dynamics. Journal of Physical Chemistry C, 112, 1398213991.10.1021/jp803274jGoogle Scholar
Brathwaite, R.L., Christie, A.B., Faure, K., Townsend, M.G. & Terlesk, S. (2012) Origin of the Matauri Bay halloysite deposit, Northland, New Zealand. Mineralium Deposita, 47, 897910.10.1007/s00126-012-0404-9Google Scholar
Brathwaite, R.L., Christie, A.B., Faure, K., Townsend, M.G. & Terlesk, S. (2014) Geology, mineralogy and geochemistry of the rhyolite-hosted Maungaparerua clay deposit, Northland. New Zealand Journal of Geology and Geophysics, 57, 357368.10.1080/00288306.2014.920889Google Scholar
Brindley, G.W. (1961) Kaolin, serpentine and kindred minerals. Pp. 51131 in: The X-ray Identification and Crystal Structures of Clay Minerals (G. Brown, editor). Mineralogical Society, London, UK.Google Scholar
Brindley, G.W. & Robinson, K. (1946) Randomness in the structures of kaolinitic clay minerals. Transactions of the Faraday Society, 42B, 198205.10.1039/tf946420b198CrossRefGoogle Scholar
Calvert, C.S., Buol, S.W. & Weed, S.B. (1980) Mineralogical transformations of a vertical rock-saprolite-soil sequence in the North Carolina Piedmont. Soil Science Society of America Journal, 44, 10961112.10.2136/sssaj1980.03615995004400050044xGoogle Scholar
Christidis, G.E. (2013) Assessment of industrial clays. Pp. 42550 in: Handbook of Clay Science. Part B. Techniques and Applications, 2nd edition (F. Bergaya & G. Lagaly, editors). Elsevier, Amsterdam, The Netherlands.10.1016/B978-0-08-098259-5.00017-2Google Scholar
Chukhrov, F.V. & Zvyagin, B.B. (1966) Halloysite, a crystallochemically and mineralogically distinct species. Pp. 1125 in: Proceedings of the International Clay Conference 1966 (L. Heller & A. Weiss, editors). Israel Program for Scientific Translation, Jerusalem, Israel.Google Scholar
Churchman, G.J. (1970) Interlayer water in halloysite. Unpublished PhD Thesis lodged in the Library, University of Otago, Dunedin, New Zealand.Google Scholar
Churchman, G.J. (1990) Relevance of different intercal-ation tests for distinguishing halloysite from kaolinite in soils. Clays and Clay Minerals, 38, 591599.10.1346/CCMN.1990.0380604Google Scholar
Churchman, G.J. (2000) The alteration and formation of soil minerals by weathering. Pp. F3-F76 in: Handbook of Soil Science (M.E. Sumner, editor). CRC Press, Boca Raton, Florida, USA.Google Scholar
Churchman, G.J. (2010) Is the geological concept of clay minerals appropriate for soil science? A literature-based and philosophical analysis. Physics and Chemistry of the Earth, 35, 927940.10.1016/j.pce.2010.05.009Google Scholar
Churchman, G.J. (2015) The identification and nomen-clature of halloysite (a historical perspective). Pp. 5167 in: Natural Mineral Nanotubes (P. Pasbakhsh & G.J. Churchman, editors). Apple Academic Press, Oakville, Canada.10.1201/b18107-5CrossRefGoogle Scholar
Churchman, G.J. & Carr, R.M. (1975) The definition and nomenclature of halloysites. Clays and Clay Minerals, 23, 382388.10.1346/CCMN.1975.0230510Google Scholar
Churchman, G.J. & Gilkes, R.J. (1989) Recognition of intermediates in the possible transformation of halloysite to kaolinite. Clay Minerals, 24, 579590.10.1180/claymin.1989.024.4.02CrossRefGoogle Scholar
Churchman, G.J. & Lowe, D.J. (2012) Alteration, formation and occurrence of minerals in soils. Pp. 20.1–20.72 in: Handbook of Soil Sciences. Properties and Processes, 2nd edition (P.M. Huang, Y Li & M.E. Sumner, editors). CRC Press, Boca Raton, Florida, USA.Google Scholar
Churchman, G.J. & Lowe, D.J. (2014) Clay minerals in South Australian Holocene basaltic volcanogenic soils and implications for halloysite genesis and structure. Pp. 36 in: Proceedings of the 23rd Biennial Australian Clay Minerals Society Conference (R. Gilkes, editor). University of Western Australia, Perth. Published at http://www.smectech.com.au/ACMS/ACMS_Conferences/ACMS23/Program/Abstracts/S1-0220Churchman20and%20Lowe.pdf Google Scholar
Churchman, G.J. & Theng, B.K.G. (1984) Interactions of halloysites with amides: mineralogical factors affecting complex formation. Clay Minerals, 19, 161175.10.1180/claymin.1984.019.2.04Google Scholar
Churchman, G.J., Whitton, J.S., Claridge, G.G.C. & Theng, B.K.G. (1984) Intercalation method using formamide for differentiating halloysite from kaolinite. Clays and Clay Minerals, 32, 241248.10.1346/CCMN.1984.0320401Google Scholar
Churchman, G.J., Davy, T.J., Aylmore, L.A.G., Gilkes, R.J. & Self, P.G. (1995) Characteristics of fine pores in some halloysites. Clay Minerals, 30, 8998.10.1180/claymin.1995.030.2.01Google Scholar
Churchman, G.J., Pontifex, I.R. & McClure, S.G. (2010) Factors affecting the formation and characteristics of halloysites or kaolinites in granitic and tuffaceous saprolites in Hong Kong. Clays and Clay Minerals, 58, 220237.10.1346/CCMN.2010.0580207CrossRefGoogle Scholar
Clay Minerals Society (2015) Glossary of Clay Terms April 2015. http://www.clays.org/GLOSSARY/Clay_Glossary.htm (accessed 22 January 2016)Google Scholar
Costanzo, P.M. & Giese, R.F. Jr (1986) Ordered halloysite: dimethylsulfoxide intercalate. Clays and Clay Minerals, 43, 105107.10.1346/CCMN.1986.0340115Google Scholar
Cravero, F. & Churchman, G.J. (2016) The origin of spheriodal halloysite: a review of the literature. Clay Minerals, 51, 417427.10.1180/claymin.2016.051.3.13Google Scholar
Dahlgren, R.A., Saigusa, M. & Ugolini, F.C. (2004) The nature, properties and management of volcanic soils. Advances in Agronomy, 82, 113182.10.1016/S0065-2113(03)82003-5Google Scholar
Dupuis, C. & Ertus, R. (1995) The karstic origin of the type halloysite in Belgium. Pp. 262366 in: Clays Controlling the Environment — Proceeding of the 10th International Clay Conference, Adelaide 1993 (G.J. Churchman, R.W. Fitzpatrick & R.A. Eggleton, editors). CSIRO Publishing, Melbourne, Australia.Google Scholar
Eswaran, H. & Heng, Y.Y. (1976)Theweatheringofbiotitein a profile on gneiss in Malaysia. Geoderma, 16, 920.10.1016/0016-7061(76)90090-2Google Scholar
Eswaran, H. & Wong, C.B. (1978) A study of a deep weathering profile on granite in Peninsular Malaysia. Parts I, II, and III. Soil Science Society of America Journal, 42, 144158.10.2136/sssaj1978.03615995004200010032xGoogle Scholar
Fieldes, M. (1968) Clay mineralogy. Pp. 2239 in: Soils of New Zealand, Part 2. New Zealand Soil Bureau Bulletin, 26(2), New Zealand Department of Scientific and Industrial Research, Wellington.Google Scholar
Fieldes, M. & Swindale, L.D. (1954) Chemical weathering of silicates in soil formation. New Zealand Journal of Science and Technology, B36, 140154.Google Scholar
Fordham, A.W. & Norrish, K. (1974) Direct measurement of the composition of soil components which retain added arsenate. Australian Journal of Soil Research, 12, 165172.10.1071/SR9740165Google Scholar
Galán, E. (2006) Genesis of clay minerals. Pp. 11291162 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng & G. Lagaly, editors). Developments in Clay Science, Vol. 1, Elsevier, Amsterdam, The Netherlands.10.1016/S1572-4352(05)01042-1CrossRefGoogle Scholar
Gouramanis, C., Wilkins, S. & De Deckker, P. (2010) 6000 years of environmental changes recorded in Blue Lake, South Australia, based on ostracod ecology and valve chemistry. Palaeogeography Palaeoclimat-ology, Palaeoecology, 297, 223237.10.1016/j.palaeo.2010.08.005CrossRefGoogle Scholar
Guggenheim, S. (2015) Phyllosilicates used as nanotube substrates in engineered materials: structures, chemistries, and textures. Pp. 448 in: Natural Mineral Nanotubes (P. Pasbakhsh & G. J. Churchman, editors). Apple Academic Press, Oakville, Canada.Google Scholar
Gupta, Y. & Miller, J.D. (2010) Surface force measure-ments at the basal planes of ordered kaolinite particles. Journal of Colloid and Interface Science, 344, 362371.10.1016/j.jcis.2010.01.012Google Scholar
Hamblin, A.P. & Greenland, D.J. (1972) Mineralogy of soils from the Holocene volcanic area of southern Australia. Australian Journal of Soil Research, 10, 6172.10.1071/SR9720061Google Scholar
Henmi, T. & Wada, K. (1976) Morphology and composition of allophane. American Mineralogist, 61, 379390.Google Scholar
Hofmann, U., Endell, K. & Wilm, D. (1934) Röntgenogra-phische und kolloidchemische Untersuchungen über Ton. Angewandte Chemie, 47, 539547.10.1002/ange.19340473002Google Scholar
Honjo, G., Kitamura, N. & Mihama, K. (1954) A study of clay minerals by means of single crystal electron diffraction diagrams - the structure of tubular kaolin. Clay Minerals Bulletin, 2, 133141.10.1180/claymin.1954.002.12.03CrossRefGoogle Scholar
Jacobs, H. & Sterckx, M. (1970) Contribution à létude de Pintercalation du diméthylsulfoxyde dans le réseau de la kaolinite. Pp. 154160 in: Reunion Hispano-Belga de Minerales de la Arcilla (J.M. Serratosa, editor). Consejo Superior de Investigaciones Cientificas, Madrid, Spain.Google Scholar
Jahn, R., Zarei, M. & Stahr, K. (1987) Formation of clay minerals in soils developed from basic volcanic rocks under semiarid climatic conditions in Lanzarote, Spain. Catena, 14, 359368.10.1016/0341-8162(87)90027-0Google Scholar
Janik, L.J. & Keeling, J.L. (1993) FT-IR partial least-squares analysis of tubular halloysite in kaolin samples from the Mount Hope kaolin deposit. Clay Minerals, 28, 365378.10.1180/claymin.1993.028.3.03CrossRefGoogle Scholar
Joussein, E. (2016) Geology and mineralogy of nanosized tubular halloysite. Pp. 1248 in: Nanosized Tubular Clay Minerals, Halloysite and Innogolite (P. Yuan, A. Thill & F. Bergaya, editors). Elsevier, Amsterdam.Google Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. (2005) Halloysite clay minerals — a review. Clay Minerals, 40, 38326.10.1180/0009855054040180CrossRefGoogle Scholar
Joussein, E., Petit, S. & Delvaux, B. (2007) Behaviour of halloysite clay under formamide treatment. Applied Clay Science, 35, 1724.10.1016/j.clay.2006.07.002Google Scholar
Keeling, J.L. (2015) The mineralogy, geology and occurrences of halloysite. Pp. 95115 in: Natural MineralNanotubes (P. Pasbakhsh & G.J. Churchman, editors). Apple Academic Press, Oakville, Canada.Google Scholar
Keeling, J.L., Self, P.G. & Raven, M.D. (2010) Halloysite in Cenozoic sediments along the Eucla Basin margin. MESA Journal, 59, 913.Google Scholar
Kogure, T., Mori, K., Kimura, Y. & Takai, Y. (2011) Unraveling the stacking structure in tubular halloysite using a new TEM with computer-assisted minimal-dose system. American Mineralogist, 96, 17761780.10.2138/am.2011.3907Google Scholar
Kogure, T., Mori, K., Drits, V.A. & Takai, Y. (2013) Structure of prismatic halloysite. American Mineralogist, 98, 10081016.10.2138/am.2013.4385Google Scholar
Kohyama, N., Fukushima, K. & Fukami, A. (1978) Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell. Clays and Clay Minerals, 26, 250.10.1346/CCMN.1978.0260103Google Scholar
Kulbicki, G. (1954) Diagrammes de diffraction électronique de microcristaux de kaolinite et d'halloy-site et observations sur la structure de ces mineraux. Comptes rendus de l’Académie des Sciences, Paris, 238, 24052407.Google Scholar
Lagaly, G., Ogawa, M. & Dékány, I. (2013) Clay mineral-organic interactions. Pp. 437505 in: Handbook of Clay Science. Part A. Fundamentals, 2nd edition (F. Bergaya & G. Lagaly, editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Lowe, D.J. (1986) Controls on the rates of weathering and clay mineral genesis in airfall tephras: a review and New Zealand case study. Pp. 265330 in: Rates of Chemical Weathering of Rocks and Minerals (S.M. Colman & D.P. Dethier, editors). Academic Press, Orlando, Florida, USA.Google Scholar
Lowe, D.J. (1992) Profile Descriptions of Quaternary Basaltic Volcanogenic Soils of the Mount Gambier Area, Southeast South Australia. CSIRO Division of Soils Technical Report, 9/1992, 1-26.Google Scholar
Lowe, D.J. (1995) Teaching clays: from ashes to allophane. Pp. 1923 in: Clays Controlling the Environment -Proceedings of the 10th International Clay Conference, Adelaide 1993 (G.J. Churchman, R.W. Fitzpatrick & R.A. Eggleton, editors). CSIRO Publishing, Melbourne, Australia.Google Scholar
Lowe, D.J. (2010) Introduction to the landscapes and soils of the Hamilton Basin. Pp. 1.24–1.61 in: Guidebook for Pre-conference North Island, New Zealand “Volcanoes to Oceans” Field Tour. 19th World Soils Congress, International Union of Soil Sciences, Brisbane (D.J. Lowe, V.E. Neall, M. Hedley, B. Clothier & A. Mackay, editors). Soil and Earth Sciences Occasional Publication, 3, Massey University, Palmerston North, New Zealand.Google Scholar
Lowe, D.J. & Nelson, C.S. (1994) Guide to theNature and Methods of Analysis of the Clay Fraction of Tephras in the South Auckland Region, New Zealand. Department of Earth Sciences, University of Waikato, Occasional Report (Revised), 11, 169.Google Scholar
Lowe, D.J., & Palmer, D.J. (2005) Andisols of New Zealand and Australia. Journal of Integrated Field Science, 2, 3965.Google Scholar
Lowe, D.J. & Percival, H.J. (1993) Clay mineralogy of tephras and associated paleosols and soils, and hydrothermal deposits, North Island. Guidebook for Field TourF1 -New Zealand. 10th International Clay Conference, Adelaide, Australia, F1, 1-110.Google Scholar
Lowe, D.J., Churchman, G.J., Merry, R.H., Fitzpatrick, R.W., Sheard, M.J. & Hudnall, W.H. (1996) Holocene basaltic volcanogenic soils of the Mt Gambier area, South Australia, are unusual globally: what do they tell us? Proceedings of the Australian Society of Soil Science and New Zealand Society of Soil Science National Soils Conference, University of Melbourne, Melbourne, Australia, Vol. 2, 153-154.Google Scholar
MacEwan, D.M.C. (1947) The nomenclature of the halloysite minerals. Mineralogical Magazine, 28, 364.10.1180/minmag.1947.028.196.08Google Scholar
Mehmel, M. (1935) Über die Structur von Halloysit und Metahalloysit. Zeitschrift für Kristallographie, 90, 353.Google Scholar
Mizota, C. & van Reeuwijk, L.P. (1989) Clay mineralogy and chemistry of soils formed in volcanic material in diverse climatic regions. International Soil Reference and Information Centre Monograph, 2, 1185.Google Scholar
Moon, V.G., Lowe, D.J., Cunningham, M.J., Wyatt, J., Churchman, G.J., de Lange, W.P., Mörz, T., Kreiter, S., Kluger, M.O. & Jorat, M.E. (2015) Sensitive pyro-clastic-derived halloysitic soils in northern New Zealand: interplay of microstructure, minerals, and geomechanics. Pp. 321 in: Volcanic Rocks and Soils. Proceedings of the International Workshop on Volcanic Rocks and Soils, Lacco Ameno, Ischia Island, Italy (T. Rotonda, M. Cecconi, F. Silvestri & P. Tommasi, editors). Taylor & Francis, London, UK.Google Scholar
Murad, E. & Cashion, J. (2004) Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization. Kluwer, Dordrecht, The Netherlands.10.1007/978-1-4419-9040-2Google Scholar
Murray-Wallace, C.N. (2011) Comment on: “New 40Ar/39Ar ages for selected young (<1 Ma) basalt flows of the Newer Volcanic Province, southeastern Australia” by E. Matchan & D. Phillips. Quaternary Geochronology 6, 598599.10.1016/j.quageo.2011.07.001Google Scholar
Newman, R.H., Childs, C.W. & Churchman, G.J. (1994) Aluminium coordination and structural disorder in halloysite and kaolinite by 27Al NMR spectroscopy. Clay Minerals, 29, 305312.10.1180/claymin.1994.029.3.01CrossRefGoogle Scholar
Norrish, K. (1995) An unusual fibrous halloysite. Pp. 275284 in: Clays Controlling the Environment — Proceedings of the 10th International Clay Conference, Adelaide 1993 (G.J. Churchman, R.W. Fitzpatrick & R.A. Eggleton, editors). CSIRO Publishing, Melbourne, Australia.Google Scholar
NZ Soil Bureau (1968) Soils of New Zealand, Part 2. New Zealand Soil Bureau Bulletin, 26(2), New Zealand Department of Scientific and Industrial Research, Wellington.Google Scholar
Papoulis, D., Tsolis-Katagas, P. & Katagas, C. (2004) Progressive stages in the formation of kaolinite from halloysite in the weathering of plagioclase. Clays and Clay Minerals, 52, 271285.Google Scholar
Parfitt, R.L. (1990) Soils formed in tephra in different climatic regimes. Transactions of the 14th International Congress of Soil Science, Kyoto, Vol. 7, 134-139.Google Scholar
Parfitt, R.L. & Wilson, A.D. (1985) Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. Catena Supplement, 7, 18.Google Scholar
Parfitt, R.L., Russell, M. & Orbell, G.E. (1983) Weathering sequence of soils from volcanic ash involving allophane and halloysite, New Zealand. Geoderma, 29, 4157.10.1016/0016-7061(83)90029-0Google Scholar
Parfitt, R.L., Saigusa, M. & Cowie, J.D. (1984) Allophane and halloysite formation in a volcanic ash bed under differing moisture conditions. Soil Science, 138, 360364.10.1097/00010694-198411000-00007Google Scholar
Parfitt, R.L., Childs, C.W. & Eden, D.N. (1988) Ferrihydrite and allophane in four Andepts from Hawaii and implications for their classification. Geoderma, 41, 223241.CrossRefGoogle Scholar
Pasbakhsh, P., Churchman, G.J. & Keeling, J.L. (2013) Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Applied Clay Science, 74, 4757.10.1016/j.clay.2012.06.014Google Scholar
Pochet, G., Van der Velde, M., Vanclooster, M. & Delvaux, B. (2007) Hydric properties of high charge, halloysitic clay soils from the tropical South Pacific region. Geoderma, 138, 96109.10.1016/j.geoderma.2006.10.019CrossRefGoogle Scholar
Polyak, V.J. & Güven, N. (1996) Alunite, natroalunite and hydrated halloysite in Carlsbad Cavern and Lechuguilla cave, New Mexico. Clays and Clay Minerals, 44, 843850.10.1346/CCMN.1996.0440616Google Scholar
Rasmussen, C., Matsuyama, N., Dahlgren, R.A., Southard, R.J. & Brauer, N. (2007) Soil genesis and mineral transformation across an environmental gradient on andesitic lahar. Soil Science Society of America Journal, 71, 225237.10.2136/sssaj2006.0100Google Scholar
Renac, C. & Assassi, F. (2009) Formation of non-expandable 7 Å halloysite during Eocene—Miocene continental weathering at Djebel Debbagh, Algeria: a geochemical and stable-isotope study. Sedimentary Geology, 217, 140153.10.1016/j.sedgeo.2009.04.001Google Scholar
Robertson, G.B., Prescott, J.R. & Hutton, J.T. (1996) Thermoluminescence dating of volcanic activity at Mount Gambier, South Australia. Royal Society of South Australia Transactions, 120, 712.Google Scholar
Ross, G.J., Kodama, H., Wang, C., Gray, J.T. & Lafreniere, L.B. (1983) Halloysite from a strongly weathered soil at Mont Jacques Cartier, Quebec. Soil Science Society of America Journal, 47, 327332.10.2136/sssaj1983.03615995004700020031xGoogle Scholar
Saigusa, M., Shoji, S. & Kato, T. (1978) Origin and nature of halloysite in Ando soils from Towada tephra. Geoderma, 20, 115129.10.1016/0016-7061(78)90039-3Google Scholar
Sanchez Comazano, M. & Gonzalez Garcia, S. (1966) Complejos interlaminares de caolinita y haloisita con liquidos polares. Anales de Edafologia y Agrobiologia, 24, 495520.Google Scholar
Sheard, M.J. (1990) A guide to Quaternary volcanoes in the Lower South-east of South Australia. Mines and Energy Review South Australia, 157, 4050.Google Scholar
Sheard, M.J., Lowe, D.J. & Froggatt, P.C. (1993) Mineralogy of pyroclastic and lava deposits of Holocene basaltic volcanoes of Mts Gambier and Schank, South Australia. Abstracts, IAVCEI International Volcanological Congress, Canberra, p. 98.Google Scholar
Silber, A., Bar-Yosef, B., Singer, A. & Chen, Y. (1994) Mineralogical and chemical composition of three tuffs from northern Israel. Geoderma, 63, 123144.10.1016/0016-7061(94)90002-7Google Scholar
Singer, A., Zarei, M., Lange, F.M. & Stahr, K. (2004) Halloysite characteristics and formation in the northern Golan Heights. Geoderma, 123, 279295.10.1016/j.geoderma.2004.02.012Google Scholar
Singleton, P.L., McLeod, M. & Percival, H.J. (1989) Allophane and halloysite content and soil solution silicon in soils from rhyolitic volcanic material, New Zealand. Australian Journal of Soil Research, 27, 6777.10.1071/SR9890067Google Scholar
Smith, B.W. & Prescott, J.R. (1987) Thermoluminescence dating of volcanic activity at Mt Schank, South Australia. Australian Journal of Earth Sciences, 34, 335342.10.1080/08120098708729415Google Scholar
Soil Survey Staff (2014) Keys to Soil Taxonomy, 12th edition. USDA Natural Resources Conservation Service, Washington, D.C., 1-362.Google Scholar
Soma, M., Churchman, G.J. & Theng, B.K.G. (1992) X-ray photoelectron spectroscopic analysis of halloysites with different composition and particle morphology. Clay Minerals, 27, 413421.10.1180/claymin.1992.027.4.02CrossRefGoogle Scholar
Southard, S.B. & Southard, R.J. (1989) Mineralogy and classification of andic soils in north-eastern California. Soil Science Society of America Journal, 53, 17841791.10.2136/sssaj1989.03615995005300060029xGoogle Scholar
Sposito, G. (1994) The Surface Chemistry of Natural Particles. Oxford University Press, New York, USA.Google Scholar
Sposito, G. (2008) The Chemistry of Soils, 2nd edition. Oxford University Press, New York, USA.Google Scholar
Srodon, J. (2013) Identification and quantitative analysis of clay minerals. Pp. 2549 in: Handbook of Clay Science. Part B. Techniques and Applications, 2nd edition (F. Bergaya & G. Lagaly, editors). Elsevier, Amsterdam.10.1016/B978-0-08-098259-5.00004-4Google Scholar
Stevens, K.F. & Vucetich, C.G. (1985) Weathering of Upper Quaternary tephras in New Zealand 2. Clay minerals and their climatic interpretation. Chemical Geology, 53, 237247.10.1016/0009-2541(85)90073-7Google Scholar
Takahashi, T., Dahlgren, R.A. & van Susteren, P. (1993) Clay mineralogy and chemistry of soils formed in volcanic materials in the xeric moisture regime of northern California. Geoderma, 59, 131150.10.1016/0016-7061(93)90066-TGoogle Scholar
Takahashi, T., Dahlgren, R.A., Theng, B.K.G., Whitton, J.S. & Soma, M. (2001) Potassium-selective, halloysite-rich soils formed in volcanic materials from northern California. Soil Science Society of America Journal, 65, 516526.Google Scholar
Takesako, H., Lowe, D.J., Churchman, G.J. & Chittleborough, D.J. (2010) Holocene volcanic soils in the Mt. Gambier region, South Australia. Pp. 4750 in: Proceedings of the 19th World Congress of Soil Science, International Union of Soil Sciences, Brisbane, Symposium 1.3.1 (R.J. Gilkes & N. Prakongkep, editors). Published at http://www.iuss.org (World Soil Congresses).Google Scholar
Tazaki, K. (1979) Micromorphology of halloysites pro-duced by weathering of plagioclase in volcanic ash. Pp. 415422 in: Proceedings of the 6th International Clay Conference 1978 (M.M. Mortland & V.C. Farmer, editors). Developments in Sedimentology, 27, Elsevier, Amsterdam, The Netherlands.Google Scholar
Tazaki, K. (1982) Analytical electron microscopic studies of halloysite formation processes: morphology and composition of halloysite. Pp. 573584 in: Proceedings of the 7th International Clay Conference 1981 (H. Van Olphen & F. Veniale, editors). Developments in Sedimentology, 35, Elsevier, Amsterdam, The Netherlands.Google Scholar
Tazaki, K. (2005) Microbial formation of a halloysite-like mineral. Clays and Clay Minerals, 53, 224233.10.1346/CCMN.2005.0530303Google Scholar
Theng, B.K.G., Churchman, G.J., Whitton, J.S. & Claridge, G.G.C. (1984) Comparison of intercalation methods for differentiating halloysite from kaolinite. Clays and Clay Minerals, 32, 249258.10.1346/CCMN.1984.0320402Google Scholar
Thompson, J.G. & Cuff, C. (1985) Crystal structure of kaolinite-dimethylsulfoxide intercalate. Clays and Clay Minerals, 33, 490500.10.1346/CCMN.1985.0330603Google Scholar
Torn, M.S., Trumbore, S.E., Chadwick, O.A., Vitousek, P.M. & Hendricks, D.M. (1997) Mineral control of soil organic carbon storage and turnover. Nature, 389, 170173.10.1038/38260Google Scholar
Ugolini, F.C. & Dahlgren, R.A. (2002) Soil development in volcanic ash. Global Environmental Research, 6, 6981.Google Scholar
van Otterloo, J., Cas, R.A.F. & Sheard, M.J. (2013) Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity. Bulletin ofVolcanology, 75, 737 (pp. 121).Google Scholar
Vergaro, V., Abdullayev, E., Lvov, Y.M., Zeitoun, A., Cingolani, R., Rinaldi, R. & Leporatti, S. (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules, 11, 820826.10.1021/bm9014446Google Scholar
Waser, J. (1955) Fourier transforms and scattering intensities of tubular objects. Acta Crystallographica, 8, 142150.10.1107/S0365110X55000583Google Scholar
Whittaker, E.J.W. (1954) The diffraction of X-rays by a cylindrical lattice. Acta Crystallographica, 7, 827837.10.1107/S0365110X5400254XGoogle Scholar
Ziegler, K., Hsieh, I.C.C., Chadwick, O.A., Kelly, E.F., Hendricks, D.M. & Savin, S.M. (2003) Halloysite as a kinetically controlled end product of arid-zone basalt weathering. Chemical Geology, 202, 461478.Google Scholar