Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-s4m2s Total loading time: 0.283 Render date: 2021-10-16T15:06:07.950Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A model of Fe3+-kaolinite, Al3+-goethite, Al3+-hematite equilibria in laterites

Published online by Cambridge University Press:  09 July 2018

F. Trolard
Affiliation:
Centre de Sédimentologie et de Géochimie de la Surface, CNRS, Institut de Géologie (ULP), 1, rue Blessig, 67084 Strasbourg Cedex, France
Y. Tardy
Affiliation:
Centre de Sédimentologie et de Géochimie de la Surface, CNRS, Institut de Géologie (ULP), 1, rue Blessig, 67084 Strasbourg Cedex, France

Abstract

The distribution of Fe3+-kaolinite, Al-goethite and Al-hematite and their contents of Fe and Al in bauxites and ferricretes are controlled by water activity, dissolved silica activity, temperature and particle size. The proposed model, based on ideal solid-solution equilibria in the Fe2O3-Al2O3-SiO2-H2O system, takes into account water and silica activities. By using the same considerations as those previously developed for the Fe2O3-Al2O3-H2O system, the model calculates the amounts of coexisting phases, Al or Fe substitution ratios in goethite, hematite or kaolinite, and the stability field distributions of the minerals under various conditions. Thermodynamic equilibrium conditions and element distributions within the mineral constituents are shown to be dependent on the parameters cited above. The model yields results compatible with natural observations on lateritic profiles.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, B.R. & Hall, P.L. (1973) Electron spin resonance studies of kaolins. Proc. Int. Clay Conf. Madrid, 4760.Google Scholar
Bardossy, G. (1982) Karst Bauxites. Bauxite Deposits on Carbonate Rocks. Elsevier, Amsterdam.Google Scholar
Berner, R.A. (1969) Goethite stability and the origin of red beds. Geochim. Cosmochim. Acta 33, 267273.CrossRefGoogle Scholar
Boesman, E. & Schoemacker, D. (1961) Resonance para-magnetique de Tion Fe3+ dans la kaolinite. C.R. Acad. Sci. Paris, 252, 19311933.Google Scholar
Bonnin, D., Muller, S. & Calas, G. (1982) Le fer dans les argiles kaolinitiques. Etude par spectrometrie R.P.E., Mossbauer, EXAFS. Bull. Miner., 105, 467475.Google Scholar
Cantinolle, P., Didier Ph., Meunier, J.D., Parron, C., Guendon, J.L., Bocquier, G. & Nahon, D. (1984) Kaolinites ferriferes et oxyhydroxydes de fer et d'alumine dans les bauxites des Canonettes (S.E. de la France). Clay Miner., 19, 125135.CrossRefGoogle Scholar
Cases, J.M., Lietard, O., Yvon, Y. & Delon, J.F. (1982) Etude des proprietes cristallochimiques, morphologiques, superficielles des kaolinites desordonnees. Bull. Miner., 105, 439455.Google Scholar
Didier, PH., Fritz, B., Nahon, D. & Tardy, Y. (1983) Fe3+-kaolinites, Al-goethites and Al-hematites in tropical ferricretes. Pp. 3544 in: Petrology of Weathering and Soils (Nahon, D. & Noack, Y., editors). Sci. Geol. Mem. 71.Google Scholar
Didier, PH., Perret, D., Tardy, Y. & Nahon, D. (1985) Equilibres entre kaolinites ferriferes, goethites alumineuses et hematites alumineuses dans les systemes cuirasses. Role de Tactivite de Teau et de la taille des pores. Sci. Geol. Bull., 38, 383397.Google Scholar
Eswaran, H. & de Coninck, F. (1971) Clay mineral formations and transformations in basaltic soils, in tropical environments. Pedologie, 21, 181210.Google Scholar
Fayolle, M. (1979) Caracterisation analytique d'un profil d'argile a silex de VOuest du Bassin de Paris. Thèse 3e cycle, Univ. Paris VII, France.Google Scholar
Fritz, B. & Tardy, Y. (1974) Etude thermodynamique du systeme gibbsite, quartz, kaolinite, gaz carbonique. Application a la genese des podzols et des bauxites. Sci. Geol. Bull., 26, 339367.Google Scholar
Hall, P.L. (1980) The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties. Clay Miner., 15, 321335.CrossRefGoogle Scholar
Helgeson, H.C., Delany, J.M., Nesbitt, H.W. & Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Amer. J. Sci. 278 A, 1229.Google Scholar
Hem, J.D. & Lind, J. (1974) Kaolinite synthesis at 25°C. Sciences, 184, 11711173.CrossRefGoogle ScholarPubMed
Hem, J.D. & Roberson, C.E. (1967) Form and stability of aluminum hydroxide complexes in dilute solution. U.S. Geol. Water Supply Pap. 1827 A, 55 pp.Google Scholar
Hem, J.D., Roberson, C.E., Lind, C.J. & Polzer, W. (1973) Chemical interactions of aluminum with aqueous silica at 25°C. U.S. Geol. Water Supply Pap. 1827 E, 57 pp.Google Scholar
Hemingway, B.S. & Robie, R.A. (1977a) The entropy and Gibbs free energy of formation of the aluminium ion. Geochim. Cosmochim. Acta, 41, 14021404.CrossRefGoogle Scholar
Hemingway, B.S. & Robie, R.A. (1977b) Enthalpies of formation of low albite (NaAlSi308), gibbsite (Al(OH)3) and NaA102; Revised values for AH\298 and AG\298 of some aluminosilicate minerals. Geol. Surv. J. Res., 5, 413429.Google Scholar
Hemingway, B.S., Robie, R.A. & Kittrick, J.A. (1978) Revised value for the Gibbs free energy of formation of [Al(OH)4(aq)], diaspore, boehmite and bayerite at 298-15 K and 1 bar, the thermodynamic properties of kaolinite to 800 K and 1 bar, and the heats of solution of several gibbsite samples. Geochim. Cosmochim. Acta, 42, 13551543.CrossRefGoogle Scholar
Herbillon, A.J., Mestagh, M.M., Vielvoye, L. & de Rouane, E.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner., 2, 201220.CrossRefGoogle Scholar
Janot, C., Gibert, H. & Tobias, C. (1973) Caracterisation des kaolinites ferriferes par spectrometrie Mossbauer. Soc. Frang. Miner. Cristall. Bull., 96, 281291.Google Scholar
Kampf, N. & Schwertmann, U. (1983) Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma, 29, 2729.CrossRefGoogle Scholar
Langmuir, D. (1971) Particle size effect on the reaction: goethite = hematite + water. Amer. J. Sci., 271, 147156.CrossRefGoogle Scholar
Leprun, J.C. (1979) Les cuirasses ferrugineuses des pays cristallins de TAfrique Occidentale seche. Transformation. Degradation. Sci. Geol. Mem., 58, 244 pp.Google Scholar
Loughnan, F.C. & Bayliss, P. (1961) The mineralogy of bauxite deposits. Am. Miner., 46, 207217.Google Scholar
Malden, P.J. & Meads, R.E. (1967) Substitution by iron in kaolinite. Nature, 215, 844846.CrossRefGoogle Scholar
McFarlane, M.J. (1976) Laterite and Landscape. Academic Press, London.Google Scholar
McFarlane, M.J. (1983) Laterites. Pp. 758 in: Chemical Sediments and Geomorphology: Precipitates and Residua in the Near-Surface Environment. (Goudi, A.S. & Pye, K., editors). Academic Press, London.Google Scholar
Meads, R.E. & Malden, P.S. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner., 10, 313345.CrossRefGoogle Scholar
Mendelovici, E., Yariv, S.H. & Villalba, R. (1979) Iron-bearing kaolinite in Venezuelan laterites: I. Infrared spectroscopy and chemical dissolution evidence. Clay Miner., 14, 323331.CrossRefGoogle Scholar
Mestdagh, M.M., Vielvoye, L. & Herbillon, A.J. (1980) Iron in kaolinite. II. The relationship between kaolinite and iron content. Clay Miner., 15, 113.CrossRefGoogle Scholar
Muller, D., Bocquier, G., Nahon, D. & Paquet, H. (1981) Analyse des differenciations mineralogiques et structurales d'un sol ferralitique a horizon nodulaire du Congo. Cahier Office Rech. Sci. Tech. Outre-Mer (ORSTOM), Paris, serie Pedologie, 18, 87109.Google Scholar
Muller, J.P. & Bocquier, G. (1986) Dissolution of kaolinites and accumulation of iron oxides in lateritic- ferruginous nodules: mineralogical and microstructural transformations. Geoderma, 37, 113136.CrossRefGoogle Scholar
Nahon, D. (1976) Cuirasses ferrugineuses et encroutements calcaires au Senegal occidental et en Mauritanie. Systemes evolutifs: geochime, structure, relais et coexistence. Sci. Geol. Mem., 44, 232 pp.Google Scholar
Naumov, G.B., Ryzhenko, B. & Kodakovsky, I.L. (1971) Handbook of Thermodynamic Data. Atomizdat., Moscow.Google Scholar
Novikoff, A. (1974) L'alteration des roches du Massif du Chaillus (Republique Populaire du Congo). Formation et evolution des argiles dans la zone ferrallitique. These Univ. Louis Pasteur, Strasbourg, France.Google Scholar
Parfitt, R.L. & McHardy, W.J. (1974) Imogolite from New Guinea. Clays Clay Miner., 22, 363371.CrossRefGoogle Scholar
Parks, G.A. (1972) Free energies of formation and aqueous solubilities of aluminum hydroxides and oxyhydroxides at 25°C. Am. Miner., 57, 11631189.Google Scholar
Rengasamy, P., Krishna-Murti, G.S.R. & Sarna, V.A.K. (1975) Isomorphous substitution of iron for aluminum in soil kaolinites. Clays Clay Miner., 23, 211214.CrossRefGoogle Scholar
Robie, R.A. & Walbaum, D.R. (1968) Thermodynamic properties of minerals and related substances at 298-15 K (25°C) and one atmosphere (1013 millibars) pressure and at higher temperatures. U.S. Geol. Surv. Bull., 1259, 256 pp.Google Scholar
Robie, R.A., Hemingway, B.S. & Fisher, J.R. (1978) Thermodynamic properties of minerals and related substances at 298 K and one bar (105 pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull., 1452, 456 pp.Google Scholar
Hem, J.D. & Lind, J. (1974) Kaolinite synthesis at 25°C. Sciences, 184, 11711173.CrossRefGoogle ScholarPubMed
Hem, J.D. & Roberson, C.E. (1967) Form and stability of aluminum hydroxide complexes in dilute solution. U.S. Geol. Water Supply Pap. 1827 A, 55 pp.Google Scholar
Hem, J.D., Roberson, C.E., Lind, C.J. & Polzer, W. (1973) Chemical interactions of aluminum with aqueous silica at 25°C. U.S. Geol. Water Supply Pap. 1827 E, 57 pp.Google Scholar
Hemingway, B.S. & Robie, R.A. (1977a) The entropy and Gibbs free energy of formation of the aluminium ion. Geochim. Cosmochim. Acta, 41, 14021404.CrossRefGoogle Scholar
Hemingway, B.S. & Robie, R.A. (1977b) Enthalpies of formation of low albite (NaAlSi308), gibbsite (Al(OH)3) and NaA102; Revised values for AH\298 and AG\298 of some aluminosilicate minerals. Geol. Surv. J. Res., 5, 413429.Google Scholar
Hemingway, B.S., Robie, R.A. & Kittrick, J.A. (1978) Revised value for the Gibbs free energy of formation of [Al(OH)4(aq)], diaspore, boehmite and bayerite at 298-15 K and 1 bar, the thermodynamic properties of kaolinite to 800 K and 1 bar, and the heats of solution of several gibbsite samples. Geochim. Cosmochim. Acta 42, 13551543.CrossRefGoogle Scholar
Herbillon, A.J., Mestagh, M.M., Vielvoye, L. & de Rouane, E.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner., 2, 201220.CrossRefGoogle Scholar
Janot, C., Gibert, H. & Tobias, C. (1973) Caracterisation des kaolinites ferriferes par spectrometrie Mossbauer. Soc. Frang. Miner. Cristall. Bull., 96, 281291.Google Scholar
Kampf, N. & Schwertmann, U. (1983) Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma, 29, 2729.CrossRefGoogle Scholar
Langmuir, D. (1971) Particle size effect on the reaction: goethite = hematite + water. Amer. J. Sci., 271, 147156.CrossRefGoogle Scholar
Leprun, J.C. (1979) Les cuirasses ferrugineuses des pays cristallins de TAfrique Occidentale seche. Transformation. Degradation. Sci. Geol. Mem., 58, 244 pp.Google Scholar
Loughnan, F.C. & Bayliss, P. (1961) The mineralogy of bauxite deposits. Am. Miner., 46, 207217.Google Scholar
Malden, P.J. & Meads, R.E. (1967) Substitution by iron in kaolinite. Nature 215, 844846.CrossRefGoogle Scholar
McFarlane, M.J. (1976) Laterite and Landscape. Academic Press, London.Google Scholar
McFarlane, M.J. (1983) Laterites. Pp. 758 in: Chemical Sediments and Geomorphology: Precipitates and Residua in the Near-Surface Environment. (Goudi, A.S. & Pye, K., editors). Academic Press, London.Google Scholar
Meads, R.E. & Malden, P.S. (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner., 10, 313345.CrossRefGoogle Scholar
Mendelovici, E., Yariv, S.H. & Villalba, R. (1979) Iron-bearing kaolinite in Venezuelan laterites: I. Infrared spectroscopy and chemical dissolution evidence. Clay Miner., 14, 323331.CrossRefGoogle Scholar
Mestdagh, M.M., Vielvoye, L. & Herbillon, A.J. (1980) Iron in kaolinite. II. The relationship between kaolinite and iron content. Clay Miner., 15, 113.CrossRefGoogle Scholar
Muller, D., Bocquier, G., Nahon, D. & Paquet, H. (1981) Analyse des differenciations mineralogiques et structurales d'un sol ferralitique a horizon nodulaire du Congo. Cahier Office Rech. Sci. Tech. Outre-Mer (ORSTOM), Paris, serie Pedologie 18, 87109.Google Scholar
Muller, J.P. & Bocquier, G. (1986) Dissolution of kaolinites and accumulation of iron oxides in lateritic- ferruginous nodules: mineralogical and microstructural transformations. Geoderma 37, 113136.CrossRefGoogle Scholar
Nahon, D. (1976) Cuirasses ferrugineuses et encroutements calcaires au Senegal occidental et en Mauritanie. Systemes evolutifs: geochime, structure, relais et coexistence. Sci. Geol. Mem., 44, 232 pp.Google Scholar
Naumov, G.B., Ryzhenko, B. & Kodakovsky, I.L. (1971) Handbook of Thermodynamic Data. Atomizdat., Moscow.Google Scholar
Novikoff, A. (1974) L'alteration des roches du Massif du Chaillus (Republique Populaire du Congo). Formation et evolution des argiles dans la zone ferrallitique. These Univ. Louis Pasteur, Strasbourg, France.Google Scholar
Parfitt, R.L. & McHardy, W.J. (1974) Imogolite from New Guinea. Clays Clay Miner., 22, 363371.CrossRefGoogle Scholar
Parks, G.A. (1972) Free energies of formation and aqueous solubilities of aluminum hydroxides and oxyhydroxides at 25°C. Am. Miner., 57, 11631189.Google Scholar
Rengasamy, P., Krishna-Murti, G.S.R. & Sarna, V.A.K. (1975) Isomorphous substitution of iron for aluminum in soil kaolinites. Clays Clay Miner., 23, 211214.CrossRefGoogle Scholar
Robie, R.A. & Walbaum, D.R. (1968) Thermodynamic properties of minerals and related substances at 298-15 K (25°C) and one atmosphere (1013 millibars) pressure and at higher temperatures. U.S. Geol. Surv. Bull., 1259, 256 pp.Google Scholar
Robie, R.A., Hemingway, B.S. & Fisher, J.R. (1978) Thermodynamic properties of minerals and related substances at 298 K and one bar (105 pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull., 1452, 456 pp.Google Scholar
Sarazin, G., Ildefonse, Ph. & Muller, J.P. (1982) Controle de la solubilite du fer et de raluminium en milieu ferrallitique. Geochim. Cosmochim. Acta 46, 12671279.CrossRefGoogle Scholar
Schwertmann, U., Fischer, W.R. & Taylor, R.M. (1974) New aspects of iron oxide formation in soils. Trans. 11th Int. Con. Soil Sci. Moscow, 237247.Google Scholar
Sieffermann, G. (1973) Methodes d'etude et constituants des sols. Mem. ORSTOM, 183 pp.Google Scholar
Sposito, G. (1981) The Thermodynamics of Soil Solutions. Oxford Univ. Press.Google Scholar
Tardy, Y. (1969) Geochimie des alterations. Etude des arenes et des eaux de quelques massifs cristallins d'Europe et d'Afrique. Mem. Service Cart. Geol. Alsace-Lorrain, 31, 190 pp.Google Scholar
Tardy, Y. (1971) Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chem. Geol. 7, 253271.CrossRefGoogle Scholar
Tardy, Y. (1982) Kaolinite and smectite stability in weathering conditions. Estud. Geol. 38, 295312.Google Scholar
Tardy, Y. & Nahon, D. (1985) Geochemistry of laterites, stability of Al-goethite, Al-hematite and Fe3+- kaolinite in bauxites and ferricretes: an approach to the mechanism of formation concretion. Amer. J. Sci. 285, 865903.CrossRefGoogle Scholar
Tardy, Y. & Novikoff, A. (1988) Activite de Teau et deplacement des equilibres gibbsite-kaolinite dans les profils lateritiques. C.R. Acad. Sci. Paris, 306-11, 3944.Google Scholar
Tardy, Y., Valeton, I. & Melfi, A. (1988) Climats et paleoclimats tropicaux periatlantiques. Role des facteurs climatiques et thermodynamiques: temperature et activite de Teau, sur la repartition et la composition mineralogique des bauxites et des cuirasses ferrugineuses, au Bresil et en Afrique. C.R. Acad. Sci. Paris, 306-11,289295.Google Scholar
Trolard, F. (1986) Physico-chimie des cuirasses lateritiques. Domaine de stabilite des oxydes et hydroxydes de fer et d'aluminium. These de Doctorat, Strasbourg, France.Google Scholar
Trolard, F. & Tardy, Y. (1987) The stabilities of gibbsite, boehmite, aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle size. Geochim. Cosmochim. Acta 51, 945957.CrossRefGoogle Scholar
Ulbrich, H.H. & Merino, E. (1974) An examination of standard enthalpies of formation of selected minerals in the system SiO2-Al2O3-Na2O-K2O-H2O. Am. J. Sci. 274, 510542.CrossRefGoogle Scholar
Valeton, I. (1972) Bauxites. Elsevier, Amsterdam.Google Scholar
Wada, K., Henmi, T., Yoshinaga, N. & Patterson, S.H. (1972) Imogolite and allophane found in saprolite of basalt on Mauri, Hawaii. Clays Clay Miner. 25, 375380.CrossRefGoogle Scholar
Yvon, J., Lietard, O., Cases, J.M. & Delon, J.F. (1981) Mineralogie des argiles kaoliniques des Charentes. Bull. Mineral., 104, 55 pp.Google Scholar
40
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A model of Fe3+-kaolinite, Al3+-goethite, Al3+-hematite equilibria in laterites
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A model of Fe3+-kaolinite, Al3+-goethite, Al3+-hematite equilibria in laterites
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A model of Fe3+-kaolinite, Al3+-goethite, Al3+-hematite equilibria in laterites
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *