Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-26T02:10:12.293Z Has data issue: false hasContentIssue false

Clay mineral distribution related to rift activity, sea-level changes and paleoceanography in the Cretaceous of the Atlantic Ocean

Published online by Cambridge University Press:  09 July 2018

M. Thiry
Affiliation:
Ecole des Mines de Paris, Centre d'Informatique Géologique 35, rue St Honoré, 77305 Fontainebleau
T. Jacquin
Affiliation:
URA CNRS 723, Laboratoire de Géochimie des Roches Sédimentaires, Université de Paris-Sud, Bat.504, 91405 Orsay Cedex, France

Abstract

The distribution of clay minerals from the N and S Atlantic Cretaceous deep-sea sediments is related to rifting, sea-floor spreading, sea-level variations and paleoceanography. Four main clay mineral suites were identified: two are inherited and indicative of ocean geodynamics, whereas the others result from transformation and authigenesis and are diagnostic of Cretaceous oceanic depositional environments. Illite and chlorite, together with interstratified illite-smectite and smectite occur above the sea-floor basalts and illustrate the contribution of volcanoclastic materials of basaltic origin to the sediments. Kaolinite, with variable amounts of illite, chlorite, smectite and interstratified minerals, indicates detrital inputs from continents near the platform margins. Kaolinite decreases upward in the series due to open marine environments and basin deepening. It may increase in volume during specific time intervals corresponding to periods of falling sea-level during which overall facies regression and erosion of the surrounding platforms occurred. Smectite is the most abundant clay mineral in the Cretaceous deep-sea sediments. Smectite-rich deposits correlate with periods of relatively low sedimentation rates. As paleoweathering profiles and basal deposits at the bottom of Cretaceous transgressive formations are mostly kaolinitic, smectite cannot have been inherited from the continents. Smectite is therefore believed to have formed in the ocean by transformation and recrystallization of detrital materials during early diagenesis. Because of the slow rate of silicate reactions, transformation of clay minerals requires a long residence time of the particles at the water/sediment interface; this explains the relationships between the observed increases in smectite with long-term sea-level rises that tend to starve the basinal settings of sedimentation. Palygorskite, along with dolomite, is relatively common in the N and S Atlantic Cretaceous sediments. It is not detrital because correlative shelf deposits are devoid of palygorskite. Palygorskite is diagnostic of Mg-rich environments and is indicative of the warm and hypersaline bottom waters of the Cretaceous Atlantic ocean.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, A., Floquet, M., Mas, R. & Melténdez, A. (1989) Origin and evolution of an eppeiric carbonate platform, Upper Cretaceous, Spain. XII Congreso Espanol de Sedimentologia, 21-31.Google Scholar
Adachi, M., Koshi, Y. & Ryuichi, S. (1986) Hydrothermal chert and associated siliceous rocks from the northern Pacific: their geological significance as an indication of ocean ridge activity. Sediment. Geol. 47, 125148.Google Scholar
Arthur, M.A. & Natland, J.H. (1979) Carbonaceous sediments in the North and South Atlantic. The role of salinity in stable stratification of early Cretaceous basins. Pp. 375-401 in: Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironments (M. Talwani, W. Hay & W.B.F. Ryan, Editors). Maurice Ewing Ser., 3. Am. Geophysical Union, Washington.Google Scholar
Aubry, M. & Pomerol, B. (1975) La pétrogenèse des craies du Bassin de Paris est-elle une conséquence de l'expansion océanique. C.R. Acad. Sci. Paris, (II), 280, 20812084.Google Scholar
Austin, G.S. (1970) Weathering of the Sioux Quartzite near New Ulm, Minnesota, As related to Cretaceous climates. J. Sed. Pet. 40, 184193.Google Scholar
Barbieri, M., Bellanca, A. & Neri, R. (1981) Origin of zeolites associated with montmorillonite and silica phases in Miocene deposits of Sicily. Miner. Petrogr. Acta, 25, 4155.Google Scholar
Barron, E.J. (1987) Cretaceous plate tectonic reconstructions. Palaeogeog., Palaeoclim., Palaeoecol. 59, 329.Google Scholar
Barron, E.J., Saltzman, E. & Price, D. (1982) lnoceramus: Occurrence in South Atlantic and oxygen isotope paleotemperatures at hole 530A. Pp. 893-904 in: Initial Reports of the Deep Sea Drilling Project (W.W. Hay, J.C. Sibuet et al, Editors), 75, Us Gov. Print. Off., Washington.Google Scholar
Berthou, P.Y., Blanc, P. & Cnamley, H. (1982) Sédimentation argileuse comparde au Crétacé Moyen et supérieur dans le bassin occidental portugais et sur la marge voisine (site 398 DSDP): enseignements paléogéographiques et tectoniques. Bull. Soc. Géol. Fr. (7)24, 461472.CrossRefGoogle Scholar
Bolli, H.M. & Ryan, W.B.F. (1978) Angola continental margin. Sites 364-365. Pp. 357-390 in: Initial Reports of the Deep Sea Drilling Project (H.M. Bolli, W.B.F. Rya. et al., Editors), 60, Us Gov. Print. Off., Washington.Google Scholar
Bonnot-Courtois, C. (1981) Géochimie des terres rares dans les principaux milieux de formation et de sédimentation des argiles. Thèse Sci., Paris-Sud, France.Google Scholar
Brass, G.W., Southam, J.R. & Peterson, W.H. (1982) Warm saline bottom water in ancient ocean. Nature, 296, 620-523.CrossRefGoogle Scholar
Brosse, E. (1982) Contribution à La minéralogie et à La géoehimie des sédiments pélagiques profonds. Thèse Doct. Ing., Ensmp, Paris, France.Google Scholar
Busson, G. (1984a) Relation entre les gypses des plate-formes du Nord-Ouest africain et les black shales de l'Atlantique au Crnomanien inférieur-moyen. C.R. Acad. Sc. Paris, (II), 298, 801804.Google Scholar
Busson, G. (1984b) Relations entre la sédimentation du Crétacé Moyen et supérieur de la plate-forme du nord-ouest africain et les dépôts contemporains de l'Atlantique centre et nord. Eclogae Geol. Helv. 77, 221235.Google Scholar
Callen, R.A. (1984) Clays of the palygorskite-sepiolite group: depositional environment, Age and distribution. Pp. 1-37 in: Palygorskite-Sepiolite. Occurences, Genesis and Uses (A. Singer & E. Galan, Editors). Development in Sedimentology, 37, Elsevier.Google Scholar
Chamley, H. (1979) North Atlantic clay sedimentation and paleoenvironment since the late Jurassic. Pp. 342-361 in: Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironments (M. Talwani, W. Hay & W.B.F. Ryan, Editors). Maurice Ewing Ser., 3, Am. Geophysical Union, Washington.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer Verlag, Berlin.CrossRefGoogle Scholar
Chamley, H. & Debrarant, P. (1982) L'Atlantique Nord à L'Albien: influences américaines et afticaines sur la sédimentation. C.R. Acad. Sci. Paris, (II), 294, 525528.Google Scholar
Chamley, H., Debrabant, P. & Flicoteaux, R. (1988) Comparative evolution of the Senegal and eastern central Atlantic basins, From mineralogical and geochemical investigations. Sedimentology, 35, 85103.Google Scholar
Chamley, H., Deconninck, J.F. & Millot, G. (1990) Sur l'abondance des minéraux smectitiques dans les sédiments matins communs déposés lots des périodes de haut niveau marin du Jurassique supérieur au Paléogène. C.R. Acad. Sci. Paris, (II), 311, 15291536.Google Scholar
Chamley, H., Debrabant, P., Foulon, P.J. & Maillot, H. (1978) Minéralogie et géochimie des sédiments secondaires et cénozoiques de la marge atlantique nord-orientale. Bull. Soc. Géol. Fr. (7), 20, 401410.CrossRefGoogle Scholar
Claparols, C., Desprairies, A. & Loubet, M. (1990) Chemical and isotopic (143Nd/144Nd and 87Sr/86Sr) characteristics of black shales Mesozoic series from the south Atlantic ocean: Evidence of contemporaneous volcanism. Chem. Geol., 84, 360362.CrossRefGoogle Scholar
Clauek, N., HofféT, M. & Karpoff, A.M. (1982) The Rb-Sr isotope system as an index of origin and diagenetic evolution of southern Pacific red clays. Geochim. Cosmochim. Acta 46, 29592964.Google Scholar
Cole, T.G. (1985) Composition, Oxygen isotope geochemistry, And origin of smectite in the met alliferous sediments of the Bauer Deep, Southeast Pacific. Geochim. Cosmochim. Acta 49, 221235.Google Scholar
Combes, J. (1969) Recherches sur la genrse des bauxites dans le Nord-Est de l'Espagne, Le Languedoc et l'Ariége (France). M(m. Centre Etude Rech. Géol. Hydrogéol., Montpellier, III-IV, 375 p.Google Scholar
Comses, J. (1984) Regards sur la géologie des bauxites; Aspects récents sur la genèse de quelques gisements à Substratum carbonaté. Bull. Centre Rech. Explor. Prod. Elf-Aquitaine, Pau, 8, 251274.Google Scholar
Combes, J. & Peybernes, B. (1989) La marge ouest-européenne et ses bauxites dan les Pyrénées au Crétacé Inférieur. Field Trip Guide Book of the “Groupe Français du Crétacé”.Google Scholar
Covtvre, R.A. (1977) Composition and origin of palygorskite rich and montmorillonite rich zeolite containing sediments from Pacific ocean. Chem. Geol. 19, 113130.Google Scholar
Daoudi, L., Deconninck, J.F., Beauchamp, J. & Debrabant, P. (1989) Minéraux argileux du bassin d'Agadir (Maroc) au Jurassique supérieur-Crétacé. Comparaison avec le domaine est-atlantique voisin. Ann. Soc. Géol. Nord, Lille, 108, 1524.Google Scholar
Desprairies, A. & Bonnot-Courtos, C. (1980) Relation entre la composition des smectites d'altrration sous-marine et leur cortége de terres rares. Earth Planet. Sci. Lett. 48, 124130.Google Scholar
Desprairies, A., Bonnot-COURTOIS, C., Jehanno, C., Vernhet, S. & Joron, J.L. (1981) Mineralogy and geochemistry of alteration products in Leg 81 basalts. Pp. 733-742 in: Initial Reports of the Deep Sea Drilling Project (D.G. Roberts, D. Schnitke. et al., Editors), 81, Us Gov. Print. Off., Washington.Google Scholar
Estéoule, J., EstéOULE-CHOUX, J. & Louail, J. (1971) Sur la présence de clinoptilolite dans les dépôts marnocalcaires du Crétacé Supérieur de l'Anjou. C.R. Acad. Sci. Paris, (II), 272, 15691572.Google Scholar
Floquet, M. (1991) La plate-forme Nord-Castillane au Crétacé Supérieur (Espagne). Mém. Géol. Univ. Dijon, 14, 925 p.Google Scholar
Freytet, P. (1971) Les dépôts continentaux et marins du Crétacé Supérieur et des couches de passage à L'Eocène en Languedoc. Bull. BRGM, Sect. I, 4, 154.Google Scholar
Gibbs, R.J. (1977) Clay mineral segregation in the marine environment. J. Sed. Pet. 47, 237243.Google Scholar
Gillot, E. (1983) La marge celtique au Crétacé D'aprés la campagne 80 du DSDP-1POD 1 (Atlantique). Thèse 3ème cycle, Univ. Dijon, FranceGoogle Scholar
Graciansky, P.Ch. (de) & Poag, C.W. (1985) Geologic history of Goban Spur, Northwest Europe continental margin. Pp. 1187-1216 in. Initial Reports of the Deep Sea Drilling Project (P.Ch. de Graciansky & C.W. Poag, Editors), 80, Us Gov. Print. Off., Washington.Google Scholar
Graciansky, P.Ch. (de), Brosse, E., Deroo, G., Herbin, J.P., Montadert, L., Müller, C., Schaaf, A. & Sigal, J. (1982) Les formations d'âige Crétacé Dans les sites DSDP de l'Atlantique Nord. Rev. Inst. Fr. Pétrole, 37, 275336.CrossRefGoogle Scholar
Graciansky, P.Ch. (de), Brosse, E., Deroo, G., Herbin, J.P., Montadert, L., Müller, C., Schaaf, A. & Sigal, A. (1987) Organic rich sediments and palaeoenvironmental reconstructions of the Cretaceous North Atlantic. Pp. 317-344 in: Marine Petroleum Source Rocks (J. Brooks & A.J. Fleet, Editors), Spec. Publ. 26, Geol. Soc. Am., Boulder.Google Scholar
Guendon, J.L., Parron, C. & Triat, J.M. (1983) Incidences des altérations crétacées sur la notion de Sidérolithique dans le Sud-Est de la France. Bull. Soc. Géol. Fr. (7) 25, 41-50.CrossRefGoogle Scholar
Haq, B.U. (1991) Sequence stratigraphy, Sea-level change, And significance for the deep sea. Spec. PubL Int. Ass. Sediment. 12, 339.Google Scholar
Haq, B.U., Hardenbol, J. & Vail, P.R. (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. Pp. 71-108 in: Sea-Level Changes: An Integrated Approach (C.K. Wilgus et al., Editors), Sepm 8pec. Publ. 42, Tulsa.Google Scholar
Hay, R.L. (1966) Zeolites and zeolite reactions in sedimentary rocks. Spec. Pap. Geol. Soc. Am. 85, 130.Google Scholar
Hay, W.W. (1988) Paleoceanography: A review for the GSA Centennial. Geol. Soc. Am. Bull. 10G 1934-1956.Google Scholar
Herbin, J.P., De Graciansky, P.Ch., Jacquin, T., Magniez-Jannin, F., Müller, C. & Unternehr, P. (1987) Cretaceous anoxic events in South Atlantic. Revista Brasileira de Geociencias, 17, 9299.CrossRefGoogle Scholar
Hiscott, R.N., Wilson, R.C.L., Gradstein, S.M., Pojalte, V., Garcia-Mondejar, J., Bounoreau, R.R. & Wishart, H. A. (1990) Comparative stratigraphy on subsidence history of Mesozoic Rift basins of North Atlantic. AAPG Bull. 74, 6076.Google Scholar
Hoffert, M. (1980) Les “argiles rouges des grands fonds” Dans le Pacifique Centre-Est. Authigenèse, Transport, Diagenèse. Sci. Géol. Mém. 61, 281 p.Google Scholar
Holtzapffel, T. (1983) Origine et évolution des smectites albo-aptiennes et paléogènes du domaine Nord-Atlantique. Thése 3éme cycle, Univ. Tech. Lille, France.Google Scholar
Holtzapffel, T., Bonnot-COURTOIS, C., Chamley, H. & Clauer, N. (1985) Héritage et diagenèse des smectites du domaine sédimentaire nord-atlantique (Crétacé, Paléogéne). Bull. Soc. Géol. Fr. (8) 1, 25-33.Google Scholar
Houghton, R.L., Rothe, P. & Galehouse, P. (1979) Distribution and chemistry of phillipsite, Clinoptilolite and associated zeolites at D.S.D. sites 382, 385 and 386 in Western North Atlantic. Pp. 463-483 in: Initial Report of the Deep Sea Drilling Project (R.E. Tucholke, P.R. Vogt et al., Editors), 63, Us Gov. Print. Off., Washington.Google Scholar
Hubbard, R.J. (1988) Age and significance of sequence boundaries on Jurassic and early Cretaceous rifted continental margins. AAPG Bull. 72, 4973.Google Scholar
Jacquin, T. (1987a) Analogies et différences entre les black shales du Crétacé Inférieur et supérieur de l'Atlantique Sud. Bull. Soc. Géol. Fr. (8) 4, 705-713.Google Scholar
Jacquin, T. (1987b) Les événements anoxiques dans l'Atlantique Sud au Crétacé. Thèse Doct., Univ. Dijon, France.Google Scholar
Jansa, L.F. & Pe-Piper, G. (1988) Middle Jurassic to early Cretaceous igneous rocks along eastern North Atlantic American continental margin. AAPG Bull. 72, 347366.Google Scholar
Juignet (1974) La transgression crdtac(e sur la bordure orientale du Massif armoricain. Thèse Sci., Univ. Caen, France.Google Scholar
Karpoff, A.M., Hoffert, M. & Clauer, N. (1981) Sedimentary sequences at Deep Sea Drilling Project site 464: Silicification processes and transition between biogenic oozes and brown argilaceous clays. Pp. 759-771 in: Initial Reports of the Deep Sea Drilling Project (J. Thiede, T.L. Vallier et al., Editors), 62, Us Gov. Print. Off., Washington.Google Scholar
Karpoff, A.M., Lagabrielle, Y., Boillot, G. & Girardeau, J. (1989) L'authigénèse océanique de palygorskite par halmyrolyse de péridotites serpentinisées (Marge de Galice): ses implications géodynamiques. C.R. Acad. Sci. Paris, (II) 308, 647∼54.Google Scholar
Kastner, M. (1981) Authigenic silicates in deep-sea sediments: Formation and diagenesis. Pp. 915-980 in: The Sea (C. Emiliani, Editor). John Wiley & Sons, New York.Google Scholar
Kolla, V., Henderson, L. & Biscaye, P.E. (1976) Clay mineralogy and sedimentation in the western Indian ocean. Deep Sea Res. 23, 949961.Google Scholar
Lancelot, Y. (1973) Chert and silica diagenesis in sediments from the Central Pacific. Pp. 377-406 in: Initial Reports of the Deep Sea Drilling Project (E.L. Winterer, J.I. Ewing et al., Editors), 17, Us Gov. Print Off., Washington.Google Scholar
Lapparent, J. (DE) (1930) Les bauxites de la France méridionale. Mdm Carte Géol. Ft. 187 p.Google Scholar
Latouche, C. & Maillot, N. (1980) Minéraux argileux et évolution des environnements sédimentaires du domaine Atlantique Nord-Oriental durant le Paléogène. Bull. Soc. Géol. Fr. (7) 22, 757-761.CrossRefGoogle Scholar
Leinen, M., Cwienk, D., Heath, G.R., Biscaye, P.E., Kolla, V., Thiede, J. & Dauphin, J. (1986) Distribution of biogenic silica and quartz in recent deep-sea sediments. Geology, 14, 199203.Google Scholar
Louail, J. (1984) La transgression crétacée au Sud du Massif armoricain. Cénomanien de l'Anjou et du Poitou, Crétacé Supérieur de Vendée. Etude stratigraphique, Sédimentologique et minéralogique. Mém. Soe. Géol. Minér. Bretagne, Rennes, 25, 333 p.Google Scholar
Magniez-Jannin, F. & Müller, C. (1987) Cretaceous stratigraphic and paleoenvironmental data from the South Atlantic (Foraminifers and Nannoplankton). Revista Brasileira de Geociencias, 17, 100105.Google Scholar
Magniez-Jannin, F. & Jacquin, T. (1988) Foraminifères et séquences sédimentaires: vers une meilleure compréhension des environnements anoxiques du Crétacé Dans l'Atlantique Sud. Rev. Paléobiologie, 7, 297307.Google Scholar
Manoubi, T. & Badaut, D. (1984) Croissance cristalline et homogéneisation chimique de monoparticules argileuses au cours de la diagenèse. C.R. Acad. Sci. Paris, (II), 299, 441446.Google Scholar
Marliére, R. & Robaszinski, F. (1975) Document no. 9: Crétacé. Prof. Papers, Conseil Géologique, Minist. Aft. Econ., Bruxelles, 53 p.Google Scholar
Masson, D.G. & Miles, P.R. (1986a) Structure and development of Porcupine Seabight sedimentary basins, Offshore Southwest Ireland. AAPG Bull. 70, 536548.Google Scholar
Masson, D.G. & Miles, P.R. (1986b) Basins development around margins of North Atlantic. AAPG Bull. 70, 721729.Google Scholar
Médioni, R. & Robaszinski, F. (1980) Les faciés Wealdiens. Pp. 275-287 in. Synthése du Bassin de Paris (C. Mégnien, Editor), Mém. BRGM, 101, Orléans.Google Scholar
Meyer, R. (1976) Continental sedimentation, Soil genesis and marine transgression in the basal beds of the Paris Basin. Sedimentology, 23, 235253.Google Scholar
Millot, G. (1949) Relations entre la constitution et la genèse des roches sédimentaires argileuses. Géol. Appl. Prospec. Min. Nancy, 2, 352 p.Google Scholar
Millot, G. (1970) Geology of Clays. Springer, Berlin.Google Scholar
Millot, G., Nahon, D., Paquet, H., Ruellan, A. & Tardy, Y. (1977) L'épigénie calcaire des roches silicatées darts les encroOtements carbonatés en pays subaride, Anti-Atlas (Maroc). Sci. Géol., Bull. 30, 129152.Google Scholar
Moreau (1977) Les environnements sédimentaires marins darts le Cénomanien du Nord du Bassin d'Aquitaine. Bull. Soc. Géol. Fr. 19, 282288.Google Scholar
Müller, C., Schaaf, A. & Sigal, J. (1983) Biochronostratigraphie des formations d'5ge Crétacé Darts les forages D.S. D.P. darts l'Atlantique Nord. Rev. Inst. Ft. Pétrole, 38, 683708.CrossRefGoogle Scholar
Nathan, Y. & Flexer, A. (1977) Clinoptilolite, Paragenesis and stratigraphy. Sedimentology, 24, 845855.Google Scholar
Natland, J.H. (1978) Composition, Provenance and diagenesis of Cretaceous clastic sediments drilled on the Atlantic continental rise off Southern Africa, D.S.D.P. 361; Implications for the early circulation of the South Atlantic. Pp. 1025-1062 in: Initial Reports of the Deep Sea Drilling Project (H.M. Bolli, W.B.F. Rya. et al., Editors), 40, Us Gov. Print. Off., Washington.Google Scholar
Parron, C. (1975) Contribution à L'étude des paléoaltérations des grés du Crétacé Suprérieur du Gard (de Pont-Saint-Esprit à Uzès). Consdquences stratigraphiques et paléogéographiques. Thèse 3ème cycle, Univ. Aix-Marseille, France.Google Scholar
Pernet, O. (1983) La transgression de la base du Crétacé Sur la bordure Sud-Est du Bassin de Paris (Valanginien-Hauterivien-Barremien). Stratigraphie, Sédimentologie. Thèse 3ème cycle, Univ. Bourgogne, Dijon, France.Google Scholar
Pitman, W.C. (1978) Relationship between eustasy and stratigraphic sequences of passive margins. Geol. Soc. Am. Bull. 89, 13891403.2.0.CO;2>CrossRefGoogle Scholar
Platel, J. (1989) Le Crétacé Supérieur de la plate-forme septentrionale du Bassin d'Aquitaine. Stratigraphie et évolution géodynamique. Document BRGM, Orléans, 164, 572 p.Google Scholar
Porrenga, D.H. (1966) Clay minerals in recent sediments of the Niger delta. Clays Clay Miner. 14, 221233.Google Scholar
Rat, P. (1962) Contribution à L'étude stratigraphique du Purbeckien-Wealdien de la région de Santander (Espagne). Bull. Soc. Géol. Fr. 7, 312.Google Scholar
Rat, P., Gillot, E., Magniez-Janin, F. & Pascal, A. (1985) Paleoenvironmental study of Barremian-Albian sediments at Deep Sea Drilling Project site 549 in the eastern North Atlantic. Pp. 905-925 in: Initial Reports of the Deep Sea Drilling Project (P.Ch. de Graciansky & C.W. Poag, Editors), 80, Us Gov. Print. Off., Washington.Google Scholar
Riech, V. (1979) Diagenesis of silica, Zeolites, And phyllosilicates at sites 397 and 398. Pp. 741-759 in: Initial Reports of the Deep Sea Drilling Project (U. von Rad, W.B.F. Ryan et al., Editors), 47, Us Gov. Print. Off., Washington.Google Scholar
Riech, V. & Von RAD, U. (1979) Silica diagenesis in the Atlantic ocean: Diagenetic potential and transformations. Pp. 315-340 in: Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment (W. Hay & W.B.F. Ryan, Editors), Maurice Ewing Ser., 3, Am. Geophysical Union, Washington.Google Scholar
Robert, C. (1982) Modalités de la sédimentation argileuse en relation avec l'histoire de l'Atlantique Sud. Thèse Sci., Univ. Aix-Marseille, France.Google Scholar
Robert, C. (1987) Clay mineral associations and structural evolution of South Atlantic: Jurassic to Eocene. Palaeogeog., Palaeoclim. Palaeoecol. 58, 8-108.CrossRefGoogle Scholar
Rosato, J. & Kulm UD. (1982) Clay mineralogy of the Perou continental margin and adjacent Nazca plate: Implications for provenance, Sea-level changes, And continental accretion. Geol. Soc. Am., Mem. 154, 545568.Google Scholar
Saltzman, E. & Barron, E. J. (1982) Deep circulation in the late Cretaceous oxygen isotope paleotemperatures from Inoceramus remains in D.S.D. cores. Palaeogeog., Palaeoclim., Palaeoecol. 40, 167181.Google Scholar
Sellwood, B.W. & Slaoen, C. (1981) Mesozoic and Tertiary argillaceous units: Distribution and composition. J. Eng. Geol. 14, 263275.Google Scholar
Sigleo, W.R. & Reinnardt, J. (1988) Paleosols from some Cretaceous environments in the southeastern United States. Pp. 123-142 in. Paleosols and Weather Trough Geological Time-Principles and Applications (J. Reinhardt & W.R. Sigleo, Editors), Spec. Paper, 216, Geol. Soc. Am., Boulder.Google Scholar
Singer, A. (1984) Pedogenetic palygorskite in arid environment. Pp. 169-176 in: Palygorskite-Sepiolite. Occurrences, Genesis and Uses (A. Singer & E. Galan, Editors), Development in Sedimentology, 37, Elsevier.Google Scholar
Sladen, C. (1983) Trends in early Cretaceous clay mineralogy in NW Europe. Zitteliana, 10, 349357.Google Scholar
Sladen, C. & Batten, D.J. (1984) Source-area environments of late Jurassic and early Cretaceous sediments in Southeast England. Proc. Geol. Ass. 95, 149163.Google Scholar
Steinberg, M. (1981) Biosiliceous sedimentation, Radiolarite periods and silica budget fluctuations. Oceanologica Acta, Sp. Issue, 4, 149154.Google Scholar
Steinberg, M. (1989) Fluctuations of the accumulation rate of clay minerals in the South Atlantic ocean during the last 120 M.y. Abstracts—Int. Clay Conf., Strasbourg, 371.Google Scholar
Steinberg, M., Holtzapffel, T., Rautureau, M., Clauer, N., Bonnot-Courtois, C., Manoubi, T. & Badaut, D. (1984) Croissance cristalline et homogénéisation chimique de monoparticules argileuses au cours de ta diagénèse. C.R. Acad. Sci. Paris, (II), 299, 441446.Google Scholar
Stonecipher, S.A. (1976) Origin, Distribution and diagenesis of phillipsite and clinoptilolite in deep sea sediments. Chem. Geol. 17, 307318.Google Scholar
Thiry, M., Forette, N. & Schmitt, J.M. (1983) Techniques de Diffraction des Rayons X et Interprétation des Diagrammes. Note Tech., Ecole des Mines, Cggm, Paris, 51 p.Google Scholar
Trauth, N. (1977) Argiles évaporitiques dans la sréimentation carbonatre continentale et épicontinentale tertiaire. Bassins de Paris, De Mormoiron et de Salinelles (France), Jbel Ghassoul (Maroc). Sci. Géol Mém. 49, 203 p.Google Scholar
Triat, J.M. (1982) Paléoaltérations dans le Crétacé Supérieur de la Provence rhodanienne. Sci. Géol. Mém. 68, 202 p.Google Scholar
Tocnolke, B.E. & Vogt, P.R. (1979) Western-North Atlantic:Sedimentary evolution and aspects of tectonic history. Pp. 791-825 in: Initial Reports of the Deep Sea Drilling Project (B.E. Tucholke, P.R. Vogt et al., Editors), 43, Us Gov. Print. Off., Washington.Google Scholar
Vail, P.R., Audemard, F., Eisner, P. & Perez-Cruz, G. A. (1992) The new global stratigraphy. In: Cyclic and Event Stratigraphy II (G. Einsele & A. Seilacher, Editors), Springer Verlag, Berlin (in press).Google Scholar
Van Andel, T.J., Thiede, J., Scla∼er, J.G. & Hay, W.W. (1977) Depositional history and paleoceanography of the South Atlantic during the last 125 million years. J. Geol. 85, 651∼98.Google Scholar
Von Rap, U. & Sarti, M. (1986) Early Cretaceous “events” In the evolution of the eastern and western North Atlantic continental margins. Geol. Rund. 75, 139158.CrossRefGoogle Scholar
Weaver, C.E. (1989) Clays, Muds, And Shales. Contribution to Sedimentology, 44, 819 p, Elsevier, Amsterdam.Google Scholar
Weaver, C.E. & Beck, K.C. (1977) Miocene of the United States: a model for chemical sedimentation in a perimarine environment. Sediment. Geol., 17, 234 p.CrossRefGoogle Scholar
Wilde, P. & Berry, W.B.N. (1982) Progressive ventilation of the oceans-potential for return to anoxic conditions in the post-Paleozoic. Pp. 209-224 in: Nature and Origin of Cretaceous Carbon-rich Facies (M.B. Cita, Editor), Academic Press, London.Google Scholar
Windom, H.H. (1976) Lithogenous material in marine sediments. Pp. 103-135 in: Chemical Oceanography (J. Riley & R. Chester, Editors), 5, Academic Press, London.Google Scholar
Ziegler, P.A. (1988) Evolution of the Arctic-North Atlantic and the Western Tethys. AAPG Mere. 43,198 p.Google Scholar
Zimmerman, H.B., Boersma, A. & Mccoy, F.W. (1987) Carbonaceous sediments and paleoenvironment of Cretaceous South Atlantic ocean. Pp. 271-286 in: Marine Petroleum Source Rocks (J. Brooks & A.J. Fleet, Editors), Spec. Publ., 26. Geol. Soc. Am., Boulder.Google Scholar