Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T06:42:32.425Z Has data issue: false hasContentIssue false

Chemical and mineralogical characteristics of Pleistocene caliche deposits from the Central Ebro Basin, NE Spain

Published online by Cambridge University Press:  09 July 2018

C. Sancho
Affiliation:
Dpto. de Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza
A. Melendez
Affiliation:
Dpto. de Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza
M. Signes
Affiliation:
AIJU, Ibi, Alicante
J. Bastida
Affiliation:
Dpto. de Geología, Universidad de Valencia, Burjasot-Valencia, Spain

Abstract

Chemical and mineralogical analyses of fossil caliche profiles developed on top of Lower Pleistocene alluvial formations in the East-central sector of the Ebro basin indicate that they have high content of carbonate (average 84%) and high Ca/Mg ratios (average 136). The clay mineral assemblages vary slightly depending on the host material, and, therefore, on the alluvial formation in the source area. Inherited detrital minerals (illite, kaolinite and chlorite), transformed components (from chlorite to mixed-layers of chlorite-vermiculite, and from smectite to palygorskite) and a neoformed phase (palygorskite) have been observed. The contents of carbonate and magnesian clay minerals (smectite and palygorskite) increase from the bottom to the top of the profiles, in relation to hardpan laminated caliche facies. The amount of palygorskite is controlled by the concentration of Mg2+ which in turn depends on the absolute content of Mg2+ in the host material and on its relative concentration by processes of evaporation linked to decreasing permeability in the profile during the biogenic-pedogenetic carbonate accumulation stages. These processes form part of the development of caliche profiles in a semi-arid environment.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aristarain, L.F. (1970) Chemical analyses of caliche profiles from the High Plains, New Mexico. J. Geol., 78, 201–212.Google Scholar
Aristarain, L.F. (1971) Clay minerals in caliche deposits of Eastern New Mexico. J. Geol., 79, 75–90.Google Scholar
Bachman, G.O. & Machette, M.N. (1977) Calcic soils and calcretes in the southwestern United States. U.S. Geol. Surv. Open-File Report, 77749, 163 pp.Google Scholar
Bastida, J., Melendez, A. & Sancho, C. (1988) Clay minerals in caliche deposits of Central Ebro Basin (Spain) Abstracts 9th European Regional Meeting I.A.S., 1314.Google Scholar
Birkeland, P.N. (1984) Soils and Geomorphology. Oxford Univ. Press.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep sea clay in the Atlantic ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull., 76, 803–832.Google Scholar
Bomer, B. (1979) Les piedmonts du Basin de TEbre (Espagne). Mediterranee,, 3, 19–25.Google Scholar
Brindley, G.W. & Brown, G. (1980) (editors). Crystal Structure of Clay Minerals and their X-ray Identification. Mineralogical Society, London.Google Scholar
Brown, G. (1961) (editor). The X-ray Identification and Crystal Structure of Clay Mienrals. Mineralogical Society, London.Google Scholar
Callen, R.A. (1984) Clays of the palygorskite-sepiolite group: depositional environment, age and distribution. Pp. 1137 in: Palygorskite-Sepiolite: Occurrences, Genesiaand Uses A. Singer & Galan, E. (editors). Developments in Sedimentology, 37.Google Scholar
Cheng, K.L., & Bray, R.H. (1951) Determination of calcium and magnesium in soil and plant materials. Soil Sci., 72, 449458.Google Scholar
Dielh, J., Gotz, C. & Hach, C. (1950) The berzenate titration for total hardness of water. Am. Water Works Assoc. J., 42, 4048.Google Scholar
Elprince, A.M., Mashady, A.S. & Aba-Husayn, M.M. (1979) The occurrence of pedogenic palygorskite (attapulgite) in Saudi Arabia. Soil Sci., 128, 214–218.Google Scholar
Esteban, M. & Klappa, C.F. (1983) Subaerial exposure environment. Pp. 2-55 in: Carbonate Depositional Environments(P.A. Scholle etal. editors). A.A.P.G., Memoir. 33 Google Scholar
Frye, J.C., Glass, H.D., Leonard, A.B. & Coleman, D.D. (1974) Caliche and clay mineral zonation of Ogallala Formation, central-eastern New Mexico. Circular New Mexico Bureau of Mines & Mineral Resources,, 144, 16 pp.Google Scholar
Gardner, L.R. (1972) Origin of the Mormon Mesa caliche, Clark County, Nevada. GeoL Soc. America Bull., 83, 143–156.Google Scholar
Gonzalez, I. & Galan, E. (1984) Mineralogfa de los materiales terciarios del area Tarazona-Borja-Ablitas (Depresion del Ebro). Estudios Geol., 40, 115–128.CrossRefGoogle Scholar
Goudie, A. (1972) The chemistry of world calcrete deposits. J. Geol., 80, 449–462.Google Scholar
Goudie, A. (1973) Duricrust in Tropical and Subtropical Landscapes. Clarendon Press, Oxford.Google Scholar
Goudie, A. (1983) Calcrete. Pp. 93-131 in: Chemical Sediments and Geomorphology(Goudie, A. & Pye, K., editors). Academic Press, London.Google Scholar
Hay, R.L. & Wiggins, B. (1980) Pellets, ooids, sepiolite and silica in three calcretes of the south western United States. Sedimentology, 27, 559–576.Google Scholar
Henin, S. & Caillere, S. (1975) Fibrous minerals. Pp. 335-348 in: Soil Components: Inorganic Components.II (Gieseking, J.E., editor). Springer-Verlag, Berlin.Google Scholar
Huertas, F., Linares, J. & Martin Vivaldi, J.L. (1974) Minerales fibrosos de la arcilla en cuencas sedimentarias espanolas. II, Cuencas del Guadalquivir, Ebro y Depresion de Granada. Ill, Consideraciones geneticas. Estudios Geol., 30, 359–366.Google Scholar
Ingles, M. & Pueyo JJ. (1983) Estudio geoquimico y mineralogico de los sedimentos lutiticos eocenicos y oligocenicos del margen oriental de la depresion del Ebro. Revista Invest. Geol., 36, 49–66.Google Scholar
Klappa, C.F. (1979) Lichen stromatolites: criterion for subaerial exposure and a mechanism for the formation of laminar calcretes (caliche). J. Sed. Pet., 49, 387–400.Google Scholar
Machette, M.N. (1985) Calcic soils of the southwestern United States. Pp. 1-21 in: Quaternary Soils and Geomorphology of the American Southwest(Weide, D.L., editor). Geol. Soc. of America, Special Paper,, 203.Google Scholar
Mackenzie, R.C., Wilson MJ. & Mashhady, A.S. (1984) Origin of palygorskite in some soils of the Arabian Peninsula. Pp. 177186 in: Palygorshite-Sepiolite: Occurrences, Genesis and Uses(Singer, A. & Galan, E., editors). Developments in Sedimentology, 37.Google Scholar
McGrath, D.B. & Hawley, J.W. (1987) Geomorphic evolution and soil-geomorphic relationships in the Socorro area, central New Mexico. Pp. 5567 in: Guidebook to the Socorro Area, New Mexico (McLemore, V.T. & Bowie, M.R., editors). New Mexico Bureau of Mines & Mineral Resources.Google Scholar
Millot, M.G., Paquet, H. & Ruellan, A. (1969) Neoformation de l?attapulgite dans les sols a caparaces calcaires de la Basse Monlouya (Maroc oriental). C. R. Acad. Sc. Paris, 269, 2771–2774.Google Scholar
Pinilla, A. (1968) Estudio sedimentologico de la zona aragonesa de la cuenca terciaria del Ebro. Bol R. Soc. Esp. Hist. Nat. (Geologia),, 66, 207–217.Google Scholar
Puigdefabregas, C. & Souquet, P. (1986). Tecto-sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics,, 129, 173–203.CrossRefGoogle Scholar
Reeves, C.C. (1976) Caliche: Origin, Classification, Morphology and Uses. Estacado Books, Lubbock.Google Scholar
Regaya, K. (1984) Encroutements et accumulations calcaires differenciees dans los limons quaternaires de Matmata. 5eme Congres Europeen de Sedimentologie, 374375.Google Scholar
Sancho, C. (1988) Geomorfologia de la Cuenca Baja del no Cinca.Tesis Doctoral, Univ. Zaragoza, Espana.Google Scholar
Sancho, C. & Melendez, A. (1984) Las costras calcareas cuaternarias del Bajo Cinca (Prov. de Huesca). Bol. Geol. Min. XCV, 476483.Google Scholar
Singer, A. (1984) Pedogenic palygorskite in the arid environment. Pp. 169-176 in: Palygorskite-Sepiolite: Occurrences, Genesis and Uses(Singer, A. & Galan, E., editors). Developments in Sedimentology, 37.Google Scholar
Singer, A. & Norrish, K. (1974) Pedogenic palygorskite occurrences in Australia. Am. Miner., 59, 508–517.Google Scholar
Thorez, P. (1976) Practical Identification of Clay Minerals. Lelotte, Belgium.Google Scholar
Velde, B. (1985) Clay Minerals. Developments in Sedimentology, 40.Google Scholar
Warshaw, C. & Roy, R. (1961) Classification and scheme for the identification of layer silicates. Geol. Soc. America Butt., 72, 1455–1492.Google Scholar
Watts, N.L. (1980) Quaternary pedogenic calcretes from the Kalahari (southern Africa): mineralogy, genesis and diagenesis. Sedimentology,, 27, 661–686.Google Scholar
Weaver, C.E. & Beck, K.C. (1977) Miocene of the S.E. United States: a model for chemical sedimentation in a perimarine environment. Sediment. Geol., 17, 1–234.Google Scholar
Wiessmann, H. & Nehring, K. (1951) Agrikulturchemisches Praktikum. Paul Parey, Berlin.Google Scholar
Wright, V.P. (1989) A genetic classification of ancient and modern calcretes based on microstructure. Abstracts 9th European Regional Meeting I.A.S., 225226.Google Scholar
Yaalon, D.H. & Wieder, M. (1976) Pedogenic palygorskite in some arid brown (calciorthid) soils of Israel. Clay Miner., 1, 73–80.Google Scholar