Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-17T17:38:26.808Z Has data issue: false hasContentIssue false

Real-world experience with edoxaban for anticoagulation in children at risk for coronary artery thrombosis

Published online by Cambridge University Press:  03 November 2023

Eyal Sagiv*
Affiliation:
Division of Pediatric Cardiology, Seattle Children’s Hospital, Seattle, WA, USA
David M. Newland
Affiliation:
Department of Pharmacy, Seattle Children’s Hospital, Seattle, WA, USA
April Slee
Affiliation:
University College London, London, UK
Aaron K. Olson
Affiliation:
Division of Pediatric Cardiology, Seattle Children’s Hospital, Seattle, WA, USA Seattle Children’s Research Institute, University of Washington, Seattle, WA, USA
Michael A. Portman
Affiliation:
Division of Pediatric Cardiology, Seattle Children’s Hospital, Seattle, WA, USA Seattle Children’s Research Institute, University of Washington, Seattle, WA, USA
*
Corresponding author: E. Sagiv; Email: eyal.sagiv@seattlechildrens.org

Abstract

Background:

Direct oral anticoagulants have the potential to improve care in children requiring chronic anticoagulation. Edoxaban has favourable pharmacokinetics that could benefit younger patients but data on long-term safety and efficacy for specific paediatric indications are lacking.

Study Aims:

We present a single-centre experience using edoxaban in children who require chronic anticoagulation for large coronary artery aneurysms secondary to Kawasaki disease.

Methods:

Weight-based dosing of once-daily oral edoxaban was offered as alternative to standard anticoagulation for patients aged 1–18 years. Chart review was performed for a median follow-up period of 49 months on edoxaban. Steady-state pharmacokinetics and pharmacodynamics of edoxaban were also explored.

Results:

Sixteen patients on chronic therapy with edoxaban were included. No major bleeding events were reported. Two patients experienced coronary artery thrombosis after 23 and 38 months on edoxaban, 7 and 11 years after diagnosed with Kawasaki disease, respectively. This predicts 70% event-free rate at 12 years from diagnosis. Area under the curve estimates over the dosing interval of 24 hours were similar to those reported in adults.

Conclusions:

Edoxaban use is feasible and well-tolerated for long-term use in paediatric population. We suggest appropriate exposure using weight-based once-daily dosing strategy that may be comparable to standard-of-care anticoagulation in prevention of coronary artery thrombosis. Larger studies are needed to evaluate long-term safety and efficacy of edoxaban in this population.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Newburger, JW, Takahashi, M, Burns, JC. Kawasaki disease. J Am Coll Cardiol 2016; 67: 17381749.10.1016/j.jacc.2015.12.073CrossRefGoogle ScholarPubMed
McCrindle, BW, Rowley, AH, Newburger, JW, et al. Diagnosis, treatment, and long-term management of kawasaki disease: a scientific statement for health professionals from the American heart association. Circulation 2017; 135: e927e999.10.1161/CIR.0000000000000484CrossRefGoogle ScholarPubMed
McCrindle, BW, Manlhiot, C, Newburger, JW, et al. Medium-term complications associated with coronary artery aneurysms after kawasaki disease: a study from the international kawasaki disease registry. J Am Heart Assoc 2020; 9: e016440.10.1161/JAHA.119.016440CrossRefGoogle ScholarPubMed
Monagle, P, Newall, F. Management of thrombosis in children and neonates: practical use of anticoagulants in children. Hematology Am Soc Hematol Educ Program 2018; 2018: 399404.10.1182/asheducation-2018.1.399CrossRefGoogle ScholarPubMed
Cohen, O, Levy-Mendelovich, S, Ageno, W. Rivaroxaban for the treatment of venous thromboembolism in pediatric patients. Expert Rev Cardiovasc Ther 2020; 18: 733741.10.1080/14779072.2020.1823218CrossRefGoogle ScholarPubMed
Jones, S, Monagle, P, Manias, E, et al. Quality of life assessment in children commencing home INR self-testing. Thromb Res 2013; 132: 3743.10.1016/j.thromres.2013.05.011CrossRefGoogle ScholarPubMed
Baker, AL, Vanderpluym, C, Gauvreau, KA, et al. Safety and efficacy of warfarin therapy in kawasaki disease. J Pediatr 2017; 189: 6165.10.1016/j.jpeds.2017.04.051CrossRefGoogle ScholarPubMed
Albisetti, M. Use of direct oral anticoagulants in children and adolescents. Hamostaseologie 2020; 40: 6473.Google ScholarPubMed
Young, G, Lensing, AWA, Monagle, P, et al. Rivaroxaban for treatment of pediatric venous thromboembolism. An Einstein-Jr phase 3 dose-exposure-response evaluation. J Thromb Haemost 2020; 18: 16721685.10.1111/jth.14813CrossRefGoogle ScholarPubMed
Male, C, Lensing, AWA, Palumbo, JS, et al. Rivaroxaban compared with standard anticoagulants for the treatment of acute venous thromboembolism in children: a randomised, controlled, phase 3 trial. Lancet Haematol 2020; 7: e18e27.10.1016/S2352-3026(19)30219-4CrossRefGoogle ScholarPubMed
McCrindle, BW, Michelson, AD, Van Bergen, AH, et al. Thromboprophylaxis for children post-fontan procedure: insights from the UNIVERSE study. J Am Heart Assoc 2021; 10: e021765.10.1161/JAHA.120.021765CrossRefGoogle ScholarPubMed
Bhatt, MD, Portman, MA, Berger, F, et al. ENNOBLE-ATE trial: an open-label, randomised, multi-centre, observational study of edoxaban for children with cardiac diseases at risk of thromboembolism. Cardiol Young 2021; 31: 12131219.10.1017/S1047951121002523CrossRefGoogle ScholarPubMed
Portman, MA, Jacobs, JP, Newburger, JW, et al. Edoxaban for thromboembolism prevention in pediatric patients with cardiac disease. J Am Coll Cardiol 2022; 80: 23012310.10.1016/j.jacc.2022.09.031CrossRefGoogle ScholarPubMed
He, L, Gajee, R, Mangaraj, R, et al. Validation and clinical application of dried blood spot assay for quantitative assessment of edoxaban in healthy adults. Bioanalysis 2020; 12: 393407.10.4155/bio-2019-0180CrossRefGoogle ScholarPubMed
Gosselin, RC, Adcock, DM, Bates, SM, et al. International council for standardization in haematology (ICSH) recommendations for laboratory measurement of direct oral anticoagulants. Thromb Haemost 2018; 118: 437450.Google ScholarPubMed
Ono, R, Nishimura, K, Takahashi, H, et al. Impact of renal function on anti-factor xa activity concentrations with edoxaban use in patients with non-valvular atrial fibrillation. Drugs R D 2022; 22: 281288.10.1007/s40268-022-00403-5CrossRefGoogle ScholarPubMed
National Kidney Founudation. Pediatric GFR Calculator. www.kidney.org/professionals/kdoqi/gfr_calculatorPed (Accesseds 8/7/2023).Google Scholar
Kaplan, EL, Meier, P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457481.10.1080/01621459.1958.10501452CrossRefGoogle Scholar
Parasrampuria, DA, Truitt, KE. Pharmacokinetics and pharmacodynamics of edoxaban, a non-vitamin K antagonist oral anticoagulant that inhibits clotting factor Xa. Clin Pharmacokinet 2016; 55: 641655.10.1007/s40262-015-0342-7CrossRefGoogle ScholarPubMed
von Vajna, E, Alam, R, So, T-Y. Current clinical trials on the use of direct oral anticoagulants in the pediatric population. Cardiol Ther 2016; 5: 1941.10.1007/s40119-015-0054-yCrossRefGoogle ScholarPubMed
VanderPluym, C, Esteso, P, Ankola, A, et al. Real-world use of apixaban for the treatment and prevention of thrombosis in children with cardiac disease. J Thromb Haemost 2023; 21: 16011609.10.1016/j.jtha.2023.03.005CrossRefGoogle ScholarPubMed
Iemura, M, Ishii, M, Sugimura, T, et al. Long term consequences of regressed coronary aneurysms after kawasaki disease: vascular wall morphology and function. Heart 2000; 83: 307311.10.1136/heart.83.3.307CrossRefGoogle ScholarPubMed
Orenstein, JM, Shulman, ST, Fox, LM, et al. Three linked vasculopathic processes characterize kawasaki disease: a light and transmission electron microscopic study. PLoS One 2012; 7: e38998.10.1371/journal.pone.0038998CrossRefGoogle ScholarPubMed
Dionne, A, Ibrahim, R, Gebhard, C, et al. Difference between persistent aneurysm, regressed aneurysm, and coronary dilation in kawasaki disease: an optical coherence tomography study. Can J Cardiol 2018; 34: 11201128.10.1016/j.cjca.2018.05.021CrossRefGoogle ScholarPubMed
Newburger, JW, Takahashi, M, Gerber, MA, et al. Diagnosis, treatment, and long-term management of kawasaki disease: a statement for health professionals from the committee on rheumatic fever, endocarditis, and kawasaki disease, council on cardiovascular disease in the young, american heart association. Pediatrics 2004; 114: 17081733.10.1542/peds.2004-2182CrossRefGoogle Scholar
Patel, AS, Bruce, M, Harrington, W, et al. Coronary artery stenosis risk and time course in kawasaki disease patients: experience at a US tertiary pediatric centre. Open Heart 2015; 2: e000206.10.1136/openhrt-2014-000206CrossRefGoogle Scholar
Monagle, P, Lensing, AWA, Thelen, K, et al. Bodyweight-adjusted rivaroxaban for children with venous thromboembolism (EINSTEIN-Jr): results from three multicentre, single-arm, phase 2 studies. Lancet Haematol 2019; 6: e500e509.10.1016/S2352-3026(19)30161-9CrossRefGoogle ScholarPubMed
Payne, RM, Burns, KM, Glatz, AC, et al. A multi-national trial of a direct oral anticoagulant in children with cardiac disease: design and rationale of the safety of ApiXaban on pediatric heart disease on the preventioN of embolism (SAXOPHONE) study. Am Heart J 2019; 217: 5263.10.1016/j.ahj.2019.08.002CrossRefGoogle ScholarPubMed
Kobayashi, RL, Cetatoiu, MA, Esteso, P, et al. Apixaban anticoagulation in children and young adults supported with the HeartMate 3 Ventricular assist device. ASAIO J 2023; 69: e267e269.10.1097/MAT.0000000000001889CrossRefGoogle Scholar
Röshammar, D, Huang, F, Albisetti, M, et al. Pharmacokinetic modeling and simulation support for age- and weight-adjusted dosing of dabigatran etexilate in children with venous thromboembolism. J Thromb Haemost 2021; 19: 12591270.10.1111/jth.15277CrossRefGoogle ScholarPubMed
Lin, S-Y, Kuo, C-H, Ho, L-T, et al. Factors associated with edoxaban concentration among patients with atrial fibrillation. Front Pharmacol 2021; 12: 736826.10.3389/fphar.2021.736826CrossRefGoogle ScholarPubMed