Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T23:10:49.825Z Has data issue: false hasContentIssue false

Non-linear analysis of heart rate variability for evaluating the acute effects of caffeinated beverages in young adults

Published online by Cambridge University Press:  09 June 2020

Serife G. Caliskan*
Affiliation:
Department of Physics, Science and Art Faculty, Aydın Adnan Menderes University, Aydın, Turkey
Mehmet D. Bilgin
Affiliation:
Department of Biophysics, School of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
*
Author for correspondence: Serife G. Caliskan, PhD, Department of Physics, Aydın Adnan Menderes University Science and Art Faculty, Merkez Kampus, Aytepe, Efeler, Aydın09010, Turkey. Tel: +90 256 212 84 98, Fax: +90 256 213 53 79. E-mail: sgokcecaliskan@gmail.com

Abstract

Caffeinated beverages are the most consumed substances in the world. High rate of uptake of these beverages leads to various cardiovascular disorders ranging from palpitations to coronary failure. The objective of the study is to ascertain how the complexity parameters of heart rate variability are affected by acute consumption of caffeinated beverages in young adults.

Electrocardiogram measurements were performed before consuming drinks. After consuming the drinks, measurements were done again at 30 minutes and 60 minutes. Heart rate variability signals were acquired from electrocardiogram signals. Also, the signals were reconstructed in the phase space and largest Lyapunov exponent, correlation dimension, approximate entropy, and detrended fluctuation analysis values were calculated.

Heart rate increased for energy drink and cola groups but not in coffee group. Non-linear parameter values of energy drink, coffee, and cola group are increased within 60 minutes after drink consumption. This change is statistically significant just for energy drink group.

Energy drink consumption increases the complexity of the cardiovascular system in young adults significantly. Coffee and cola consumption have no significant effect on the non-linear parameters of heart rate variability.

Type
Original Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gonzaga, LA, Vanderlei, LCM, Gomes, RL, Valenti, VE.Caffeine affects autonomic control of heart rate and blood pressure recovery after aerobic exercise in young adults: a crossover study. Sci Rep 2017; 7: 14091.10.1038/s41598-017-14540-4CrossRefGoogle ScholarPubMed
Monda, M, Viggiano, A, Vicidomini, , C, et al.Expresso coffee increases parasympathetic activity in young, healthy people. Nutr Neurosci 2009; 12: 4348.10.1179/147683009X388841CrossRefGoogle Scholar
Wolk, BJ, Ganetsky, M, Babu, KM.Toxicity of energy drinks. Curr Opin Pediatr 2012; 24: 243251.10.1097/MOP.0b013e3283506827CrossRefGoogle ScholarPubMed
Steinke, L, Lanfear, DE, Dhanapal, V, Kalus, JS.Effect of “energy drink” consumption on hemodynamic and electrocardiographic parameters in healthy young adults. Ann Pharmacother 2009; 43: 596602.10.1345/aph.1L614CrossRefGoogle ScholarPubMed
Elitok, A, Öz, F, Panc, C, et al.Acute effects of red bull energy drink on ventricular repolarization in healthy young volunteers: a prospective study. Anatol J Cardiol 2015; 15: 919922.10.5152/akd.2015.5791CrossRefGoogle ScholarPubMed
Ammar, R, Song, JC, Kluger, J, White, M.Evaluation of electrocardiographic and hemodynamic effects of caffeine with acute dosing in healthy volunteers. Pharmacotherapy 2001; 21: 437442.CrossRefGoogle ScholarPubMed
Hajsadeghi, S, Mohammadpour, F, Manteghi, MJ, et al.Effects of energy drinks on blood pressure, heart rate, and electrocardiographic parameters: an experimental study on healthy young adults. Anatol J Cardiol 2016; 16: 9499.Google Scholar
Peveler, WW, Sanders, GJ, Marczinski, CA, Holmer, B.Effects of energy drinks on economy and cardiovascular measures. J Strength Cond Res 2017; 31: 882887.10.1519/JSC.0000000000001553CrossRefGoogle ScholarPubMed
Voss, A, Schulz, S, Schroeder, R, Baumert, M, Caminal, P.Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans Sries A Math Phys Eng Sci 2009; 367: 12231238.Google ScholarPubMed
Delliaux, S, Delaforge, A, Deharo, J-C, Chaumet, G.Mental workload alters heart rate variability, lowering non-linear dynamics. Front Physiol 2019; 10: 565. doi: 10.3389/fphys.2019.00565.CrossRefGoogle ScholarPubMed
Koichubekov, B, Korshukov, I, Omarbekova, N, Riklefs, V, Sorokina, M, Mkhitaryan, X.Computation of nonlinear parameters of heart rhythm using short time ECG segments. Comput Math Methods Med 2015; 2015: 983479.10.1155/2015/983479CrossRefGoogle ScholarPubMed
Pivatelli, FC, dos Santos, MA, Fernandes, GB, et al.Sensitivity, specificity and predictive values of linear and nonlinear indices of heart rate variability in stable angina patients. Int Arch Transl Med 2012; 5: 31.10.1186/1755-7682-5-31CrossRefGoogle ScholarPubMed
Neves, VR, Takahashi, ACM, do Santos-Hiss, MDB, et al.Linear and nonlinear analysis of heart rate variability in coronary disease. Clin Auton Res 2012; 22: 175183.10.1007/s10286-012-0160-zCrossRefGoogle ScholarPubMed
Tsai, CH, Ma, HP, Lin, YT, et al.Heart rhythm complexity impairment in patients with pulmonary hypertension. Sci Rep 2019; 9: 10710. doi: 10.1038/s41598-019-47144-1.CrossRefGoogle ScholarPubMed
Papaioannou, TG, Vlachopoulos, C, Ioakeimidis, N, Alexopoulos, N, Stefanadis, C.Nonlinear dynamics of blood pressure variability after caffeine consumption. Clin Med Res 2006; 4: 114118.10.3121/cmr.4.2.114CrossRefGoogle ScholarPubMed
Moraes, IAP, Silva, TD, Massetti, T, et al.Fractal correlations and linear analysis of heart rate variability in healthy young people with different levels of physical activity. Cardiol Young 2019; 29: 12361242. doi: 10.1017/S1047951119001793.CrossRefGoogle ScholarPubMed
Papakonstantinou, E, Kechribari, I, Sotirakoglou, K, et al.Acute effects of coffee consumption on self-reported gastrointestinal symptoms, blood pressure and stress indices in healthy individuals. Nutr J 2016; 15: 26.10.1186/s12937-016-0146-0CrossRefGoogle ScholarPubMed
Voskoboinik, A, Koh, Y, Kistler, PM.Cardiovascular effects of caffeinated beverages. Trends Cardiovas Med 2019; 29: 345350.10.1016/j.tcm.2018.09.019CrossRefGoogle ScholarPubMed
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Eur Heart J 1996; 17: 354381.Google Scholar
Pan, J, Thompkins, WJ.A real-time QRS detection algorithm. IEEE Trans Biomed Eng 1985; 32: 230236.10.1109/TBME.1985.325532CrossRefGoogle ScholarPubMed
Acharya, UR, Faust, O, Sree, V, et al.Linear and nonlinear analysis of normal and CAD-affected heart rate signals. Comput Methods Programs Biomed 2014; 113: 5568.10.1016/j.cmpb.2013.08.017CrossRefGoogle ScholarPubMed
Cao, L.Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 1997; 110: 4350.10.1016/S0167-2789(97)00118-8CrossRefGoogle Scholar
Fraser, AM, Swinney, HL.Independent coordinates for strange attractors from mutual information. Phys Rev A 1986; 33: 11341140.10.1103/PhysRevA.33.1134CrossRefGoogle ScholarPubMed
Caliskan, SG, Polatli, M, Bilgin, MD.Nonlinear analysis of heart rate variability of healthy subjects and patients with chronic obstructive pulmonary disease. J Med Eng Technol 2018; 42: 298305.10.1080/03091902.2018.1491650CrossRefGoogle ScholarPubMed
Tsai, CH, Lin, C, Ho, YH, et al.The association between heart rhythm complexity and the severity of abdominal aorta calcification in peritoneal dialysis patients. Sci Rep 2018; 8: 15627. doi: 10.1038/s41598-018-33789-x.CrossRefGoogle ScholarPubMed
Gronwald, T, Hoos, O.Correlation properties of heart rate variability during endurance exercise: a systematic review. Ann Noninvasive Electrocardiol 2019; 25: e12697. doi: 10.1111/anec.12697.Google ScholarPubMed
Peng, CK, Havlin, S, Stanley, HE, Goldberger, AL.Quantification of scaling exponents and crossover phenomena in nonstationary heart beat time series. Chaos 1995; 5: 8287.10.1063/1.166141CrossRefGoogle ScholarPubMed
Hardstone, R, Poil, SS, Schiavone, G, et al.Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Front Physiol 2012; 30: 450. doi: 10.3389/fphys.2012.00450.Google Scholar
Berger, AJ, Alford, K.Cardiac arrest in a young man following excess consumption of caffeinated “energy drinks”. Med J Aust 2009; 190: 4143.10.5694/j.1326-5377.2009.tb02263.xCrossRefGoogle Scholar
Mattioli, AN, Pennella, S, Farinetti, A, Manenti, A.Energy drinks and atrial fibrillation in young adults. Clin Nutr 2018; 37: 10731074.10.1016/j.clnu.2017.05.002CrossRefGoogle ScholarPubMed
Ullah, MW, Lakhani, S, Siddiq, W, Handa, A, Kahlon, Y, Siddiqui, T.Energy drinks and myocardial infarction. Cureus 2018; 10: e2658.Google Scholar
Nayak, SK, Bit, A, Dey, A, Mohapatra, B, Pal, K.A review on the nonlinear dynamical system analysis of electrocardiogram signal. J Healthc Eng 2018; 2: 119.CrossRefGoogle Scholar
Lombardi, F.Chaos theory, heart rate variability, and arrhythmic mortality. Circulation 2000; 101: 810.10.1161/01.CIR.101.1.8CrossRefGoogle ScholarPubMed
Rossi, RC, Vanderlei, FM, Bernardo, AF, et al.Effect of pursed-lip breathing in patients with COPD: linear and nonlinear analysis of cardiac autonomic modulation. COPD 2016; 11: 3945.10.3109/15412555.2013.825593CrossRefGoogle Scholar
Grasser, EK, Yepuri, G, Dulloo, AG, Montani, JP.Cardio- and cerebrovascular responses to the energy drink Red Bull in young adults: a randomized cross-over study. Eur J Nutr 2014; 53: 15611571.10.1007/s00394-014-0661-8CrossRefGoogle ScholarPubMed
Hara, A, Ohide, H, Miyagawa, K, et al.Acute effects of caffeine on blood pressure and heart rate in habitual and non-habitual coffee consumers: a randomized, double blind, placebo-controlled study. Jpn J Pharm Health Care Sci 2014; 40: 383388.CrossRefGoogle Scholar
Schaffer, SW, Jong, CJ, Ramila, KC, Azuma, J.Physiological roles of taurine in heart and muscle. L Biomed Sci 2010; 14: S2.10.1186/1423-0127-17-S1-S2CrossRefGoogle Scholar
Charrière, N, Loonam, C, Montani, JP, Dulloo, AG, Grasser, EK.Cardiovascular responses to sugary drinks in humans: galactose present milder cardiac effects than glucose or fructose. Eur J Nutr 2017; 56: 21052113.10.1007/s00394-016-1250-9CrossRefGoogle ScholarPubMed
Yaregani, VK, Krishnan, S, Engels, HJ, Gretebeck, R.Effects of caffeine on linear and nonlinear measures of heart rate variability before and after exercise. Depress Anxiety 2005; 21: 130134.10.1002/da.20061CrossRefGoogle Scholar
Garfinkel, A, Spano, ML, Ditto, WL, Weiss, JN.Controlling cardiac chaos. Science 1992; 257: 12301235.10.1126/science.1519060CrossRefGoogle ScholarPubMed