Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-27T12:18:52.282Z Has data issue: false hasContentIssue false

Relationship between syncopal symptoms and head-up tilt test modes

Published online by Cambridge University Press:  05 April 2024

Shuo Wang
Affiliation:
Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
Yali Peng
Affiliation:
Section of Science and Education, The First People’s Hospital of Changde City, Changde, China
Yuwen Wang
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
Fang Li
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
Yi Xu
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
Huifen Zheng
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China Department of Pediatrics, Shenzhen People’s Hospital, Shenzhen, China
Heli Yuan
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China Department of Pediatrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
Chunyan Hu
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China Department of Pediatrics, The Second Affiliated Hospital, University of South China, Hengyang, China
Donglei Liao
Affiliation:
Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
Hong Cai
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
Juan Zhang
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
Wen Li
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
Yiyi Ding
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China Department of Pediatrics, The First People’s Hospital of Changde City, Changde, China
Wenhua Zhang
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China Department of Pediatrics, The Third Hospital of Changsha, Changsha, China
Xiaohong Xue
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China Department of Pediatrics, Hunan Want Want Hospital, Changsha, China
Xiaoyan Liu
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China Department of Pediatrics, Changsha Central Hospital, University of South China, Changsha, China
Liping Zhu
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China Department of Neonatology, Changsha Central Hospital, University of South China, Changsha, China
Deyu Liu
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China Department of Pediatrics, Hunan Lixian People’s Hospital, Changde, China
Meihua Kang
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China Department of Pediatrics, Weijia Pediatric Hospital, Changsha, China
Liping Liu
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China Department of Pediatric Cardiology, Hunan People’s Hospital/First Affiliated Hospital of Hunan Normal University, Changsha, China
Weihong Chu
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China Department of Pediatrics, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
Xiaoming Li
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China Department of Pediatrics, Jieyang People’s Hospital, Jieyang, China
Xuemei Luo
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
Runmei Zou
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
Cheng Wang*
Affiliation:
Department of Pediatric Cardiovasology, Children’s Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
*
Corresponding author: Cheng Wang; Email: wangcheng2nd@csu.edu.cn

Abstract

Objective:

Head-up tilt test (HUTT) is an important tool in the diagnosis of pediatric vasovagal syncope. This research will explore the relationship between syncopal symptoms and HUTT modes in pediatric vasovagal syncope.

Methods:

A retrospective analysis was performed on the clinical data of 2513 children aged 3–18 years, who were diagnosed with vasovagal syncope, from Jan. 2001 to Dec. 2021 due to unexplained syncope or pre-syncope. The average age was 11.76 ± 2.83 years, including 1124 males and 1389 females. The patients were divided into the basic head-up tilt test (BHUT) group (596 patients) and the sublingual nitroglycerine head-up tilt test (SNHUT) group (1917 patients) according to the mode of positive HUTT at the time of confirmed pediatric vasovagal syncope.

Results:

(1) Baseline characteristics: Age, height, weight, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and composition ratio of syncope at baseline status were higher in the BHUT group than in the SNHUT group (all P < 0.05). (2) Univariate analysis: Age, height, weight, HR, SBP, DBP, and syncope were potential risk factors for BHUT positive (all P < 0.05). (3) Multivariate analysis: syncope was an independent risk factor for BHUT positive, with a probability increase of 121% compared to pre-syncope (P<0.001).

Conclusion:

The probability of BHUT positivity was significantly higher than SNHUT in pediatric vasovagal syncope with previous syncopal episodes.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, C, Li, Y, Liao, Y, et al. Chinese pediatric cardiology society (CPCS) guideline for diagnosis and treatment of syncope in children and adolescents. Sci Bull. 2018; 63: 15581564.CrossRefGoogle Scholar
Kenny, RA, Bhangu, J, King-Kallimanis, BL. Epidemiology of syncope/collapse in younger and older Western patient populations. Prog Cardiovasc Dis. 2013; 55: 357363.CrossRefGoogle ScholarPubMed
Chen, L, Wang, C, Wang, H, et al. Underlying diseases in syncope of children in China. Med Sci Monit. 2011; 17: H4953.CrossRefGoogle ScholarPubMed
Cannom, DS. History of syncope in the cardiac literature. Prog Cardiovasc Dis. 2013; 55: 334338.CrossRefGoogle ScholarPubMed
Sheldon, RS, Grubb, BP 2nd, Olshansky, B, et al. Heart rhythm society expert consensus statement on the diagnosis and treatment of postural tachycardia syndrome, inappropriate sinus tachycardia, and vasovagal syncope. Heart Rhythm. 2015; 2015: e4163.CrossRefGoogle Scholar
Díaz, JF, Tercedor, L, Moreno, E, et al. Vasovagal syncope in pediatric patients: a medium-term follow-up analysis. Rev Esp Cardiol. 2002; 55: 487–92.CrossRefGoogle ScholarPubMed
Xu, WR, Jin, HF, Du, JB. Diagnosis and treatment of malignant vasovagal syncope in children. Chin J Pediatr. 2022; 60: 6466.Google ScholarPubMed
Jorge, JG, Raj, SR, Teixeira, PS, et al, , . Likelihood of injury due to vasovagal syncope: a systematic review and meta-analysis. EP Europace. 2021; 23: 10921099.CrossRefGoogle ScholarPubMed
Choi, YJ, Han, MY, Lee, EH. Children with transient loss of consciousness: clinical characteristics and the effectiveness of diagnostic tests. Pediatr Neonatol. 2020; 61: 584591.CrossRefGoogle ScholarPubMed
Tao, C, Tang, C, Jin, H, et al, . Pediatric syncope: a hot issue in focus. Sci Bull. 2020; 65: 513515.CrossRefGoogle ScholarPubMed
Song, J, Tao, C, Chen, G, et al. Reduced 24-h sodium excretion is associated with a disturbed plasma acylcarnitine profile in vasovagal syncope children: a pilot study. Front Pediatr. 2020; 8: 98.CrossRefGoogle ScholarPubMed
Song, J, Li, H, Wang, Y, et al. Left ventricular ejection fraction and fractional shortening are useful for the prediction of the therapeutic response tometoprolol in children with vasovagal syncope. Pediatr Cardiol. 2018; 39: 13661372.CrossRefGoogle ScholarPubMed
Xu, WR, Du, JB, Jin, HF. Can pediatric vasovagal syncope be individually managed? World J Pediatr. 2022; 18: 4–6.CrossRefGoogle ScholarPubMed
Tao, C, Li, X, Tang, C, et al, , . Baroreflex sensitivity predicts response to metoprolol in children with vasovagal syncope: a pilot study. Front Neurosci. 2019; 13: 1329.CrossRefGoogle ScholarPubMed
Liao, Y, Xu, W-R, Li, H-X, et al. Plasma neuropeptide Y levels in vasovagal syncope in children. Chin Med J. 2017; 130: 27782784.CrossRefGoogle ScholarPubMed
Wang, Y, Wang, Y, He, B, et al. Plasma human growth cytokines in children with vasovagal syncope. Front Cardiovasc Med. 2022; 9: 1030618.CrossRefGoogle ScholarPubMed
Sung, RY, Du, ZD, Yu, CW, et al, , . Cerebral blood flow during vasovagal syncope induced by active standing or head up tilt. Arch Dis Child. 2000; 82: 154158.CrossRefGoogle ScholarPubMed
Wang, Y, Wang, Y, Li, X, et al. Efficacy of increased salt and water intake on pediatric vasovagal syncope: a meta-analysis based on global published data. Front Pediatr. 2021; 9: 663016.CrossRefGoogle ScholarPubMed
Tao, C, Tang, C, Chen, S, et al, , . Autonomic nervous function in vasovagal syncope of children and adolescents. Neurosci Bull. 2019; 35: 937940.CrossRefGoogle ScholarPubMed
Shen, WK, Sheldon, RS, Benditt, DG, et al. 2017 ACC/AHA/HRS guideline for the evaluation and management of patients with syncope: a report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart rhythm society. Circulation. 2017; 2017: e60122.Google Scholar
Brignole, M, Moya, A, de Lange, FJ, et al. 2018 ESC guidelines for the diagnosis and management of syncope. Eur Heart J. 2018; 39: 18831948.CrossRefGoogle ScholarPubMed
Liao, D, Xu, Y, Zou, R, et al. The circadian rhythm of syncopal episodes in patients with neurally mediated syncope. Int J Cardiol. 2016; 215: 186192.CrossRefGoogle ScholarPubMed
Russo, V, Parente, E, Comune, A, et al. The clinical presentation of syncope influences the head-up tilt test responses. Eur J Intern Med. 2023; 110: 4147.CrossRefGoogle ScholarPubMed
Haynes, JM, Sweeney, EL. The effect of telephone appointment-reminder calls on outpatient absenteeism in a pulmonary function laboratory. Respir Care.. 2006; 51: 3639.Google Scholar
Wang, C, Mao, D, Li, M, et al. Diagnostic difference of head-up tilt table test in the patients of unexplained dizziness and syncope. Chin J Care Med. 2005; 25: 796799.Google Scholar
Wang, Y, Wang, S, Zou, R, et al. The relationship between unexplained chest pain in children and head-up tilt test. Front Pediatr. 2022; 10: 901919.CrossRefGoogle ScholarPubMed
Zou, R, Wang, S, Li, F, et al. Clinical characteristics and hemodynamic responses to head-up tilt test in children and adolescents with unexplained sighing. Neurol Sci. 2021; 42: 33433347.CrossRefGoogle ScholarPubMed
Yan, H, Zhang, C, Du, J, et al, . Clinical significance of abdominal pain and other gastrointestinal manifestations in children with autonomic nervous-mediated syncope. Chin J Pract Pediatr. 2013; 28: 4347.Google Scholar
Shivaram, P, Angtuaco, S, Ahmed, A, et al. Age-related changes in inferior vena cava dimensions among children and adolescents with syncope. J Pediatr. 2019; 207: 4953.e3.CrossRefGoogle ScholarPubMed
Adlakha, H, Gupta, R, Hassan, R, et al, . Association between baseline blood pressures, heart rates, and vasovagal syncope in children and adolescents. Cureus. 2018; 10: e2119.Google ScholarPubMed
Hackel, A, Linzer, M, Anderson, N, et al, . Cardiovascular and catecholamine responses to head-up tilt in the diagnosis of recurrent unexplained syncope in elderly patients. J Am Geriatr Soc. 1991; 39: 663669.CrossRefGoogle ScholarPubMed
Kohno, R, Detloff, BLS, Chen, LY, et al, , . Greater early epinephrine rise with head-up posture: a marker of increased syncope susceptibility in vasovagal fainters. J Cardiovasc Electrophysiol. 2019; 30: 289296.CrossRefGoogle Scholar
Leonelli, FM, Wang, K, Evans, JM, et al. False positive head-up tilt: hemodynamic and neurohumoral profile. J Am Coll Cardiol. 2000; 35: 188193.CrossRefGoogle ScholarPubMed
Li, H, Liao, Y, Han, Z, et al. Head-up tilt test provokes dynamic alterations in total peripheral resistance and cardiac output in children with vasovagal syncope. Acta Paediatr. 2018; 107: 17861791.CrossRefGoogle ScholarPubMed
Tanaka, H, Borres, M, Thulesius, O, et al. Blood pressure and cardiovascular autonomic function in healthy children and adolescents. J Pediatr. 2000; 137: 6367.CrossRefGoogle ScholarPubMed
Liu, C, Gao, J, Cui, X, et al. A towering genome: experimentally validated adaptations to high blood pressure and extreme stature in the giraffe. Sci Adv. 2021; 7: eabe9459.CrossRefGoogle ScholarPubMed
Spáčil, J. Does body height affect the severity of chronic venous disease in lower extremities? Vnitr Lek. 2015; 61: 202206.Google ScholarPubMed
Smoljo, T, Stanić, I, Sila, S, et al. The relationship between autonomic regulation of cardiovascular function and body composition. J Obes Metab Syndr. 2020; 29: 188197.CrossRefGoogle ScholarPubMed
Eyre, EL, Duncan, MJ, Birch, SL, et al. The influence of age and weight status on cardiac autonomic control in healthy children: a review. Auton Neurosci. 2014; 186: 821.CrossRefGoogle ScholarPubMed
Taylor, NF, Bottrell, J, Lawler, K, et al. Mobile telephone short message service reminders can reduce nonattendance in physical therapy outpatient clinics: a randomized controlled trial. Arch Phys Med Rehabil. 2012; 93: 2126.CrossRefGoogle ScholarPubMed
Parikh, A, Gupta, K, Wilson, AC, et al. The effectiveness of outpatient appointment reminder systems in reducing no-show rates. Am J Med. 2010; 123: 542548.CrossRefGoogle ScholarPubMed