Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-vqgdd Total loading time: 0.181 Render date: 2021-07-24T08:45:41.286Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Effect of acute lower respiratory tract infection on pulmonary artery pressure in children with post-tricuspid left-to-right shunt

Published online by Cambridge University Press:  12 January 2021

Sakshi Sachdeva
Affiliation:
Senior Resident, Pediatric Cardiology, Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
Shyam S. Kothari
Affiliation:
Department of Cardiology, Professor of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
Saurabh K. Gupta
Affiliation:
Department of Cardiology, Additional Professor of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
Sivasubramanian Ramakrishnan
Affiliation:
Department of Cardiology, Professor of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
Anita Saxena
Affiliation:
Department of Cardiology, Professor and Head of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
Corresponding
E-mail address:

Abstract

We sought to examine the influence of clinically severe lower respiratory tract infection on pulmonary artery pressure in children having CHD with post-tricuspid left-to-right shunt, as it may have physiological and clinical implications. In a prospective single-centre observational study, 45 children with post-tricuspid left-to-right shunt and clinically severe lower respiratory tract infection were evaluated during the illness and 2 weeks after its resolution. Pulmonary artery systolic pressure was estimated non-invasively using shunt gradient by echocardiography and systolic blood pressure measured non-invasively.

Median pulmonary artery systolic pressure during lower respiratory tract infection was only mildly (although statistically significantly) elevated during lower respiratory tract infection [60 (42–74) versus 53 (40–73) mmHg, (p < 0.0001)]. However, clinically significant change in pulmonary artery systolic pressure defined as the increase of >10 mmHg was present in only 9 (20%) patients. In the absence of hypoxia or acidosis, only a small minority (9%, n = 4) showed significant pulmonary artery systolic pressure rise >10 mmHg. In the absence of hypoxia or acidosis, severe lower respiratory tract infection in patients with acyanotic CHD results in only mild elevation of pulmonary artery systolic pressure in most of the patients.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Yuan, A, Yang, PC, Lee, L, et al. Reactive pulmonary artery vasoconstriction in pulmonary consolidation evaluated by color doppler ultrasonography. Ultrasound Med Biol 2000; 26: 4956.Google ScholarPubMed
Sylvester, JT, Shimoda, LA, Aaronson, PI, Ward, JPT. Hypoxic pulmonary vasoconstriction. Physiol Rev 2012; 92: 367520.Google ScholarPubMed
Mizgerd, JP. Acute lower respiratory tract infection. N Engl J Med 2008; 14: 716727.Google Scholar
Marshall, BE, Hanson, CW, Frasch, F, Marshall, C. Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. Intensive Care Med 1994; 20: 379389.Google ScholarPubMed
Dunham-Snary, KJ, Wu, D, Sykes, EA, et al. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest 2017; 151: 181192.Google ScholarPubMed
Bardi-Peti, L, Ciotu, EP. Pulmonary hypertension during acute respiratory disease in infants. Maedica 2010; 5: 1319.Google ScholarPubMed
Du, JB, Li, SZ, Wang, BL, Li, YA. Doppler echocardiographic evaluation of pulmonary artery pressure in pneumonia of infants and children. Pediatr Pulmonol 1991; 10: 296298.Google ScholarPubMed
Sreeram, N, Watson, JG, Hunter, S. Cardiovascular effects of acute bronchiolitis. Acta Paediatrica 1991; 80: 133136.Google ScholarPubMed
Ilten, F, Senocak, F, Zorlu, P, Tesic, T. Cardiovascular Changes in children with pneumonia. Turk J Pediatr 2003; 45: 306310.Google ScholarPubMed
Kimura, D, McNamara, IF, Wang, J, Fowke, JH, West, AN, Philip, R. Pulmonary hypertension during respiratory syncytial virus bronchiolitis: a risk factor for severity of illness. Cardiol Young 2019; 29: 615619.Google ScholarPubMed
Sreter, KB, Budimir, I, Golub, A, Dorosulic, Z, Pusic, MS, Boban, M. Changes in pulmonary artery systolic pressure correlate with radiographic severity and peripheral oxygenation in adults with community-acquired pneumonia. J Clin Ultrasound 2018; 46: 4147.Google ScholarPubMed
Rabinovitch, M, Haworth, SG, Vance, Z, et al. Early pulmonary vascular changes in congenital heart disease studied in biopsy tissue. Hum Pathol 1980; 11 (S): 499509.Google ScholarPubMed
Heath, D, Edwards, JE. The pathology of hypertensive pulmonary vascular disease; a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation 1958; 18: 533547.Google ScholarPubMed
World Health Organization. (2014) Revised WHO classification and treatment of childhood pneumonia at health facilities-Evidence summaries. Geneva: World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/137319/9789241507813_eng.pdf?sequence=1. Accessed 6 July 2018.Google Scholar
Scott, JA, Wonodi, C, Moïsi, JC, et al. The definition of pneumonia, the assessment of severity, and clinical standardization in the Pneumonia Etiology Research for Child Health study. Clin Infect Dis 2012; 54 (Suppl 2): S109S116.Google ScholarPubMed
Lopez, L, Colan, SD, Frommelt, PC, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: A report from the pediatric measurements writing group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 2010; 23: 465495.Google ScholarPubMed
Pahl, E, Gidding, SS. Echocardiographic assessment of cardiac function during respiratory syncytial virus infection. Pediatrics 1988; 81: 830834.Google ScholarPubMed
Mohammad Nijres, B, Bokowski, J, Mubayed, L, Jafri, SH, Davis, AT, Abdulla, RI. Utility of pulmonary artery acceleration time to estimate systolic pulmonary artery pressure in neonates and young infants. Pediatr Cardiol 2020; 41: 265271.Google ScholarPubMed
Ranganathan, P, Pramesh, CS, Buyse, M. Common pitfalls in statistical analysis: Clinical versus statistical significance. Perspect Clin Res 2015; 6: 169170.Google ScholarPubMed
Adrie, C, Monchi, M, Dinh-Xuan, AT, Dall’Ava-Santucci, J, Dhainaut, JF, Pinsky, MR. Exhaled and nasal nitric oxide as a marker of pneumonia in ventilated patients. Am J Respir Crit Care Med 2001; 163: 11431149.Google ScholarPubMed
Supplementary material: File

Sachdeva et al. supplementary material

Table S1
Download Sachdeva et al. supplementary material(File)
File 11 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of acute lower respiratory tract infection on pulmonary artery pressure in children with post-tricuspid left-to-right shunt
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Effect of acute lower respiratory tract infection on pulmonary artery pressure in children with post-tricuspid left-to-right shunt
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Effect of acute lower respiratory tract infection on pulmonary artery pressure in children with post-tricuspid left-to-right shunt
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *