Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-05T04:41:30.975Z Has data issue: false hasContentIssue false

Some Infinite Products of Ramanujan Type

Published online by Cambridge University Press:  20 November 2018

Ayşe Alaca
Affiliation:
Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6 e-mail: aalaca@math.carleton.casalaca@math.carleton.cakwilliam@connect.carleton.ca
Şaban Alaca
Affiliation:
Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6 e-mail: aalaca@math.carleton.casalaca@math.carleton.cakwilliam@connect.carleton.ca
Kenneth S. Williams
Affiliation:
Centre for Research in Algebra and Number Theory, School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6 e-mail: aalaca@math.carleton.casalaca@math.carleton.cakwilliam@connect.carleton.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In his “lost” notebook, Ramanujan stated two results, which are equivalent to the identities

$$\underset{n=1}{\mathop{\overset{\infty }{\mathop{\prod }}\,}}\,\frac{{{\left( 1-{{q}^{n}} \right)}^{5}}}{\left( 1-{{q}^{5n}} \right)}=1-5\underset{n=1}{\mathop{\overset{\infty }{\mathop{\sum }}\,}}\,\left( \underset{d|n}{\mathop{\sum }}\,\left( \frac{5}{d} \right)d \right){{q}^{n}}$$

and

$$q\underset{n=1}{\mathop{\overset{\infty }{\mathop{\prod }}\,}}\,\frac{{{\left( 1-{{q}^{5n}} \right)}^{5}}}{\left( 1-{{q}^{n}} \right)}=\underset{n=1}{\mathop{\overset{\infty }{\mathop{\sum }}\,}}\,\left( \underset{d|n}{\mathop{\sum }}\,\left( \frac{5}{n/d} \right)d \right){{q}^{n}}.$$

We give several more identities of this type.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2009

References

[1] Alaca, A., Alaca, S., Lemire, M. F., and Williams, K. S., Theta function identities and representations by certain quaternary quadratic forms. Int. J. Number Theory 4(2008), no. 2, 219239.Google Scholar
[2] Alaca, A., Alaca, S., and Williams, K. S., An infinite class of identities. Bull. Austral. Math. Soc. 75(2007), no. 2, 239246.Google Scholar
[3] Andrews, G. E., Lewis, R., and Liu, Z.-G., An identity relating a theta function to a sum of Lambert series. Bull. London Math. Soc. 33(2001), no. 1, 2531.Google Scholar
[4] Bailey, W. N., A note on two of Ramanujan's formulae. Quart. J. Math. Oxford Ser. (2) 3(1952), 2931.Google Scholar
[5] Bailey, W. N., A further note on two of Ramanujan's formulae. Quart. J. Math. Oxford Ser. (2) 3(1952), 158160.Google Scholar
[6] Berndt, B. C., Number theory in the spirit of Ramanujan. Student Mathematical Library 34, American Mathematical Society, Providence, RI, 2006.Google Scholar
[7] Borwein, J. M., Borwein, P. B., and Garvan, F. G., Some cubic modular identities of Ramanujan. Trans. Amer. Math. Soc. 343(1994), no. 1, 3547.Google Scholar
[8] Carlitz, L., Note on some partition formulae. Quart. J. Math. Oxford Ser. (2) 4(1953), 168172.Google Scholar
[9] Darling, H. B. C., Proofs of certain identities and congruences enunciated by S. Ramanujan. Proc. London Math. Soc. (2) 19(1920), 350372.Google Scholar
[10] Dobbie, J. M., A simple proof of some partition formulae of Ramanujan’s. Quart. J. Math. Oxford Ser. (2) 6(1955), 193196.Google Scholar
[11] Farkas, H. M. and Kra, I., Theta constants, Riemann Surfaces and the modular group. Graduate Studies in Mathematics 37, American Mathematical Society, Providence, RI, 2001.Google Scholar
[12] Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers. Fourth edition. Oxford University Press, Oxford, 1960.Google Scholar
[13] Huard, J. G., Kaplan, P., and Williams, K. S., The Chowla-Selberg formula for genera. Acta Arith. 73(1995), no. 3, 271301.Google Scholar
[14] Kaplan, P. and Williams, K. S., On a formula of Dirichlet. Far East J. Math. Sci. 5(1997), no. 1, 153157.Google Scholar
[15] Landau, E., Elementary number theory. Chelsea Publishing Company, New York, NY, 1958.Google Scholar
[16] Mordell, L. J., Note on certain modular relations considered by Messrs. Ramanujan, Darling, and Rogers. Proc. London Math. Soc. (2) 20(1922), 408416.Google Scholar
[17] Petr, K., O počtu tříd forem kvadratických záporného diskriminantu. Rozpravy Ceské Akademie Císare Frantiska Josefa I 10(1901), 122.Google Scholar
[18] Ramanujan, S., The lost notebook and other unpublished papers. Narosa Publishing House, New Delhi, 1988.Google Scholar