Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-26T23:48:43.706Z Has data issue: false hasContentIssue false

Kolmogorov, Linear and Pseudo-Dimensional Widths of Classes of s-Monotone Functions in 𝕃p, 0 < p < 1

Published online by Cambridge University Press:  20 November 2018

Victor N. Konovalov
Affiliation:
Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine e-mail: vikono@imath.kiev.ua
Kirill A. Kopotun
Affiliation:
Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 e-mail: kopotunk@cc.umanitoba.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ${{B}_{p}}$ be the unit ball in ${{\mathbb{L}}_{p}}$ , $0\,<\,p\,<\,1$, and let $\Delta _{+}^{s}$ , $s\,\in \,\mathbb{N}$, be the set of all $s$-monotone functions on a finite interval $I$, i.e., $\Delta _{+}^{s}$ consists of all functions $x\,:\,I\,\mapsto \,\mathbb{R}$ such that the divided differences $[x;\,{{t}_{0}},\,...\,,\,{{t}_{s}}]$ of order $s$ are nonnegative for all choices of $\left( s\,+\,1 \right)$ distinct points ${{t}_{0}},\,.\,.\,.\,,{{t}_{s}}\,\in \,I.$ For the classes $\Delta _{+}^{s}{{B}_{P}}\,:=\,\Delta _{+}^{s}\,\cap \,{{B}_{P}},$ we obtain exact orders of Kolmogorov, linear and pseudo-dimensional widths in the spaces ${{\mathbb{L}}_{q}},$$0\,<\,q\,<\,p\,<\,1$:

$${{d}_{n}}(\Delta _{+}^{s}{{B}_{P}})_{{{\mathbb{L}}_{q}}}^{\text{psd}}\asymp {{d}_{n}}(\Delta _{+}^{s}{{B}_{P}})_{{{\mathbb{L}}_{q}}}^{\text{kol}}\asymp {{d}_{n}}(\Delta _{+}^{s}{{B}_{P}})_{{{\mathbb{L}}_{q}}}^{\text{lin}}\asymp {{n}^{-s}}.$$

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2008

References

[1] Bullen, P. S., A criterion for n-convexity. Pacific J. Math. 36(1971), 8198.Google Scholar
[2] DeVore, R. A. and Lorentz, G. G., Constructive approximation. Grundlehren Math. Wiss. 303, Springer–Verlag, Berlin, 1993.Google Scholar
[3] Ditzian, Z., Konovalov, V. N. and Leviatan, D., Approximation of Sobolev-type classes with quasi-seminorms. Rocky Mountain J. Math. 35(2005), 445478.Google Scholar
[4] Dyn, N., Lorentz, G. G. and Riemenschneider, S. D., Continuity of the Birkhoff interpolation. SIAM J. Numer. Anal. 19(1982), 507509.Google Scholar
[5] Hardy, G. H., Littlewood, J. E. and Pólya, G., Inequalities. Second edition, Cambridge University Press, 1952.Google Scholar
[6] Haussler, D., Decision-theoretic generalizations of the PAC model for neural net and other learning applications. Inform. and Comput. 100(1992), 78150.Google Scholar
[7] Konovalov, V. N. and Leviatan, D., Shape preserving widths of Sobolev-type classes of s-monotone functions on a finite interval. Israel J. Math. 133(2003), 239268.Google Scholar
[8] Kopotun, K. A., Whitney theorem of interpolatory type for k-monotone functions. Constr. Approx. 17(2001), 307317.Google Scholar
[9] Kopotun, K. and Shadrin, A., On k-monotone approximation by free knot splines. SIAM J. Math. Anal. 34(2003), 901924 (electronic).Google Scholar
[10] Lorentz, G. G., Golitschek, M. v. and Makovoz, Y., Constructive approximation. Advanced problems. GrundlehrenMath.Wiss. 304, Springer–Verlag, Berlin, 1996.Google Scholar
[11] Maiorov, V. and Ratsaby, J., The degree of approximation of sets in Euclidean space using sets with bounded Vapnik–Chervonenkis dimension. Discrete Appl. Math. 86(1998), 8193.Google Scholar
[12] Maiorov, V. and Ratsaby, J., On the degree of approximation by manifolds of finite pseudo-dimension. Constr. Approx. 15(1999), 291300 Google Scholar
[13] Pollard, D., Convergence of stochastic processes. Springer Series in Statistics, Springer–Verlag, New York, 1984.Google Scholar
[14] Pečarić, J. E., Proschan, F. and Tong, Y. L., Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering 187, Academic Press Inc., Boston, MA, 1992.Google Scholar
[15] Ratsaby, J. and Maiorov, V., Generalization of the PAC-model for learning with partial information (extended abstract). In: Computational learning theory (Jerusalem, 1997), Lecture Notes in Comput. Sci. 1208(1997), 5165.Google Scholar
[16] Roberts, A. W. and Varberg, D. E., Convex functions. Pure and Applied Mathematics 57, Academic Press, New York–London, 1973.Google Scholar
[17] Wenocur, R. S. and Dudley, R. M., Some special Vapnik–Chervonenkis classes. Discrete Math. 33(1981), 313318.Google Scholar