Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T16:39:20.932Z Has data issue: false hasContentIssue false

A Hopf Type Lemma and a $\text{CR}$ Type Inversion for the Generalized Greiner Operator

Published online by Cambridge University Press:  20 November 2018

Niu Pengcheng
Affiliation:
Department of Applied Mathematics Northwestern Polytechnical University Xi’an, Shaanxi, 710072 P.R. China
Han Yanwu
Affiliation:
Department of Mathematics and Physics Science Nanhua University Hengyang, Hunan, 421200 P.R. China
Han Junqiang
Affiliation:
Department of Applied Mathematics Northwestern Polytechnical University Xi’an, Shaanxi, 710072 P.R. China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we establish a Hopf type lemma and a $\text{CR}$ type inversion for the generalized Greiner operator. Some nonlinear Liouville type results are given.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2004

References

[1] Beals, R., Gaveau, B. and Greiner, P., Uniforms hypoelliptic Green's functions. J. Math. Pures Appl. 77 (1998), 209248.Google Scholar
[2] Birindelli, I., Capuzzo Dolcetta, I. and Cutri, A., Liouville theorems for semilinear equations on the Heisenberg group. Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 295308.Google Scholar
[3] Birindelli, I., Capuzzo Dolcetta, I. and Cutri, A., Indefinite semi-linear equations on the Heisenberg group:a priori bounds and existence. Comm. Partial Differential Equations 23 (1998), 11231157.Google Scholar
[4] Birindelli, I. and Cutri, A., A semilinear problem for the Heisenberg Laplacian. Rend. Sem. Mat. Univ. Padova, 94 (1995), 137153.Google Scholar
[5] Birindelli, I. and Prajapat, J., Nonlinear Liouville theorems in the Heisenberg group via the moving plane method. Comm. Partial Differential Equations, 24 (1999), 18751890.Google Scholar
[6] Bony, J. M., Principe du Maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier Grenobles 19 (1969), 277304.Google Scholar
[7] Folland, G. B., A fundamental solution for a subelliptic operator. Bull. Amer.Math. Soc. 79 (1973), 373376.Google Scholar
[8] Garofalo, N. and Vassilev, D., Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type. Duke Math. J. 106 (2001), 411448.Google Scholar
[9] Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order. Grundlehren Math.Wiss 224, Springer-Verlag, New York, 1983.Google Scholar
[10] Greiner, P. C., A fundamental solution for a nonelliptic partial differential operator. Can. J. Math. 31 (1979), 11071120.Google Scholar
[11] Hörmander, L., Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147171.Google Scholar
[12] Jerison, D. S. and Lee, J. M., The Yamabe problem on CR manifolds. J. Differential Geom. 25 (1987), 167197.Google Scholar
[13] Oleĭnik, O. A. and Radkevič, E. V., Second order equations with nonnegative characteristic form. Plenum Press, New York, 1973.Google Scholar
[14] Zhang, H., Niu, P. and Luo, X., Mean value theorem and Pohozaev type identities of generalized Greiner operator and their applications. J. Partial Differential Equations 14 (2001), 220234.Google Scholar