Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-06T01:50:51.792Z Has data issue: false hasContentIssue false

Functional Equations of Dirichlet Series Derived from Non-Analytic Automorphic Forms of a Certain Type

Published online by Cambridge University Press:  20 November 2018

V. Venugopal Rao*
Affiliation:
University of Saskatchewan, Regina Campus, Regina, Saskatchewan, Canada
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f(τ) be a complex valued function, defined and analytic in the upper half of the complex τ plane (τ = x+iy, y > 0), such that f(τ + λ)= f(τ) where λ is a positive real number and f(—1/τ) = γ(—iτ)kf(τ), k being a complex number. The function (—iτ)k is defined as exp(k log(—iτ) where log(—iτ) has the real value when —iτ is positive. Every such function is said to have signature (λ, k, γ) in the sense of E. Hecke [1] and has a Fourier expansion of the type f(τ) = a0 + σ an exp(2πin/λ), (n = 1,2,…), if we further assume that f(τ) = O(|y|-c) as y tends to zero uniformly for all x, c being a positive number.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1975

References

1. Hecke, E., Über die Bestimmung Dirichletscher Reihen durch ihre Funchonalgleichung, Math. Annalen 112 (1936), 664-699.Google Scholar
2. Maass, H., Die Differentialgleichungen in der Théorie der elliptischen Modulfunktionen, Math. Annalen, 125 (1953), 235-263.Google Scholar
3. Maass, H., Über die räumliche Verteilung der Punk te in Git tern mit indéfini ter Metrik, Math. Annalen, 138 (1959), 287-315.Google Scholar
4. Magnus, W., Oberhettinger, F., and Soni, R. P., Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, New York, 1966.Google Scholar
5. Rao, V. Y., Averages involving Fourier Coefficients of Non-Analytic Automorphic Forms, Canadian Mathematical Bulletin, 13(2) (1970), 187-198.Google Scholar
6. Siegel, C. L., Über die Zetafunktionen indefiniter quadratischer Formen II, Math. Zeit, 44 (1939), 398-426.Google Scholar
7. Siegel, C. L., Indefinite Quadratischer Formen and Funktionentheorie I, Math. Annalen, 124 (1951), 17-54.Google Scholar