Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-05T17:32:48.620Z Has data issue: false hasContentIssue false

Responses in Skin Microcirculation to Vestibular Stimulation Before and During Motion Sickness

Published online by Cambridge University Press:  18 September 2015

Ognyan I. Kolev*
Affiliation:
visiting Research Scientist, at present in, Universities Space Research Association, Division of Space Life Sciences, Houston, Texas, USA.
Claes Möller
Affiliation:
Departments of Otorhinolaryngology, University Hospital, Linköping, Sweden
Gert Nilsson
Affiliation:
Biomedical Engineering, University Hospital, Linköping, Sweden
Lita Tibbling
Affiliation:
Departments of Otorhinolaryngology, University Hospital, Linköping, Sweden
*
Universities Space Research Association, Division of Space Life Sciences, 3600 Bay Area Boulevard, Houston, Texas, USA 77058
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Observation of physiological changes during motion sickness is required to quantify the degree of sickness. The review of the literature does not show unifying results. An objective symptom of motion sickness is facial pallor. It reflects changes in skin microcirculation which have not been measured so far.

Methods:

Eleven healthy volunteers susceptible to motion sickness were subjected to eccentric vertical axis rotation. The dynamics and the correspondence of the changes in skin blood flow in two segments, forehead and finger, were measured by laser Doppler flowmeter.

Results and Conclusions:

The difference in the microcirculatory skin blood flow across the phases of motion sickness is significant for the forehead but not for the fingertip; the established dynamics of the forehead blood flow during motion sickness will be of benefit in quantifying the degree of sickness; there is no correlation between the blood flow changes in both measured areas; the rhythmic blood flow fluctuation increases during motion sickness; there is a difference between the blood flow responses to vestibular stimulation before the appearance of motion sickness and in the course of the sickness. Laser Doppler flowmetry is a reliable method in quantifying the degree of motion sickness.

Résumé:

RÉSUMÉ:Introduction

On doit observer des changements physiologiques pendant le mal des transports (MT) pour pouvoir quantifier le degré de malaise. Une revue de la littérature ne montre pas de résultats uniformes. Un symptôme objectif du mal des transports, qui n'a pas été mesuré à date, est la pâleur faciale qui refléte des changements dans la microcirculation.

Méthodes:

Onze volontaires normaux sensibles au mal des transports ont été soumis à la rotation eccentrique autour d'un axe vertical. Nous avons mesuré la dynamique et la correspondance des changements du flot sanguin cutané dans deux segments, le front et les doigts, au moyen d'un vélocimètre Doppler au laser.

Résultats et Conclusions:

La différence dans le débit sanguin de la microcirculation cutanée pendant toutes les phases du mal des transports est significative au niveau du front mais pas au bout des doigts. La dynamique du débit snaguin au front pendant le mal des transports sera utile pour quantifier le degré de malaise. Il n'existe pas de corrélation entre les changements du débit sanguin dans les deux régions où nous l'avons mesuré. La fluctuation rythmique du débit augmente pendant le mal des transports. Il existe une différence entre les résponses du débit sanguin à la stimulation vestibulaire avant l'apparition du mal des transports et pendant le malaise. La vélocimétrie Doppler au laser est une méthode fiable pour quantifier le degré de mal des transports.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1997

References

REFERENCES

1. Harm, DL Physiology of motion sickness symptoms. In: Crampton GH, ed. Motion and Space Sickness. Boca Raton, FI.: CRC Press, 1990; 153179.Google Scholar
2. Money, KE Motion sickness. Physiol Rev 1970; 50: 139.Google Scholar
3. Graybiel, A, Lackner JR. Evaluation of the relationship between motion sickness symptomatology and blood pressure, heart rate, and body temperature. Aviat Space Environ Med 1983; 51: 211214.Google Scholar
4. Johnson, JM The cutaneous circulation. In: Shepherd, AP, Oberg, PA, eds. Laser-Doppler Blood Flowmetry. Boston: Kluwer Academic Publishers, 1990; 121139.Google Scholar
5. Drummer, C, Stromeyer, H, Riepl, RL, et al. Hormonal changes after parabolic flight: implications on the development of motion sickness. Aviat Space Environ Med 1990; 61: 831838.Google Scholar
6. Aratow, M, Hargens, AR, Meyer, JU, Arnold, SA Postural responses of head and foot cutaneous microvascular flow and their sensitivity to bed rest. Aviat Space Environ Med 1991; 62: 246251.Google ScholarPubMed
7. Kolev, OI, Nilsson, G, Tibbling, L Influence of intense sound stimuli on skin microcirculation. Clin Autonomic Res 1995; 5: 187190.Google Scholar
8. Graybiel, A, Wood, CD, Miller, EF, Cramer, DB Diagnostic criteria for grading the severity of acute motion sickness. Aerosp Med 1968; 453455.Google Scholar
9. Intaglietta, M. Vasomotion as normal microvascular activity and a reaction to impared homeostasis. In: Intaglietta, M ed. Vasomotion and Flow Modulation in the Microcirculation. Basel: Karger AG, 1989; 110.Google Scholar
10. Sokolov, EN Higher nervous functions: the orienting reflex. Ann Rev Physiol 1963; 25: 545580.Google Scholar
11. Bruck, K. Thermic balance and body temperature regulation. In: Schmidt, RF, Thews, G eds. Human Physiology, vol 4. New York: Springer, 1983; 1846.Google Scholar
12. Heath, ME, Downey, JA The cold face test in clinical autonomic assessment. Clin Sci 1990; 78: 139147.CrossRefGoogle ScholarPubMed
13. Janig, W Functions of the sympathetic innervation of the skin. In: Loewy, AD, Spyer, KM, eds. Central Regulation of Autonomic Functions. New York: Oxford University Press, 1990; 334349.CrossRefGoogle Scholar
14. Bell, C, Janig, W, Kummel, H, Xu, H. Differentiation of vasodilator and sudomotor responses in the cat paw pad to preganglionic sympathetic stimulation. J Physiology 1983; 364: 93104.Google Scholar
15. Lundblad, L Neuropeptides and autonomic nervous control of the respiratory mucosa. In: Mygind, N, Pipkorn, U, Dahl, R, eds. Rhinitis and Asthma. Copenhagen: Munksgaard, 1990; 6575.Google Scholar
16. Wallin, BG Neural control of human skin blood flow. J Autonomic Nerv Syst 1990; 30 (Suppl.): 185190.CrossRefGoogle ScholarPubMed
17. Tenland, T, Salerud, EG, Nilsson, GE, Oberg, PA Spatial and temporal variations in human skin blood flow. Int J Microcirc Clin Exp 1983; 2:8190.Google Scholar
18. Colantuoni, A, Bertuglia, S, Intaglietta, M Quantitation of rhythmic diameter changes in arterial microcirculation. Am J Physiol 1984; 246:H508-H517.Google ScholarPubMed
19. Colantuoni, A, Bertuglia, S, Intaglietta, M Variations of rhythmic diameter changes at the arterial microvascular bifurcations. Pflugers Arch 1985; 403: 289295.Google Scholar