Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-pgkvd Total loading time: 0.311 Render date: 2022-08-19T18:17:36.184Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Optimal Check Size and Reversal Rate to Elicit Pattern-reversal MEG Responses

Published online by Cambridge University Press:  02 December 2014

Wei-Ta Chen
Affiliation:
Neurological Institute, Taipei Veterans General Hospital, and Department of Neurology, Taipei Medical University Hospital, and School of Medicine, and Institute of Neuroscience, School of Life Science, National Yang-Ming University, Taipei, Taiwan
Yu-Chieh Ko
Affiliation:
Department of Ophthalmology, Taipei Veterans General Hospital, and Institute of Clinical Medicine, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
Kwong-Kum Liao
Affiliation:
Neurological Institute, Taipei Veterans General Hospital, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
Jen-Chuen Hsieh
Affiliation:
Department of Medical Research and Education, Taipei Veterans General Hospital, and School of Medicine, and Institute of Neuroscience, School of Life Science, National Yang-Ming University, Taipei, Taiwan
Tzu-Chen Yeh
Affiliation:
Department of Medical Research and Education, Taipei Veterans General Hospital, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
Zin-An Wu
Affiliation:
Neurological Institute, Taipei Veterans General Hospital, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
Low-Tone Ho
Affiliation:
Department of Medical Research and Education, Taipei Veterans General Hospital, and School of Medicine, National Yang-Ming University, Taipei, Taiwan
Yung-Yang Lin
Affiliation:
Neurological Institute, and Department of Medical Research and Education, Taipei Veterans General Hospital, and School of Medicine, and Institute of Neuroscience, School of Life Science, National Yang-Ming University, Taipei, Taiwan
Rights & Permissions[Opens in a new window]

Abstract:

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

To determine the impact of check size and interstimulus interval (ISI) on neuromagnetic visual cortical responses.

Methods:

We recorded visual evoked fields to pattern-reversal stimulation with central occlusion in ten subjects. The ~100 ms magnetic activation (P100m) was analyzed by single dipole modeling.

Results:

With 1 s ISI, P100m strengths increased as check size increased from 15' up to 120' of visual arc, and larger checks elicited less P100m activation. With 120' checks, we found no P100m attenuation as ISI decreased from 4 s to 0.16 s. P100m sources around the calcarine sulcus did not vary with check size or ISI.

Conclusions:

The magnitude of cortical activation during visual contrast processing is check size-dependent and the 120' checks are optimum for future studies on neuromagnetic visual cortical functions using central-occluded stimulation. The corresponding neuronal activation demonstrated a short refractory period less than 0.16 s. We also found significantly overlapping cortical representation areas for different check sizes or ISIs.

Résumé:

RÉSUMÉ:Objectif:

Déterminer l’impact de la taille des carreaux et de l’intervalle inter stimulus (IIS) sur les réponses corticales visuelles neuromagnétiques.

Méthodes:

Nous avons enregistré des potentiels évoqués visuels à la stimulation par damier avec occlusion centrale chez 10 sujets. L’activation magnétique ~100 ms (P100m) a été analysée par modélisation dipôle unique.

Résultats:

Avec 1 s d’IIS, les forces P100m augmentaient avec l’augmentation de la taille des carreaux de 15' jusqu’à 120' d’arc visuel. Les carreaux de plus grande taille déclenchaient moins d’activation P100m. Avec des carreaux de 120', nous n’avons observé aucune attenuation P100m avec la diminution d’IIS de 4 s à 0,16 s. Les sources P100m autour de la scissure calcarine ne variaient pas selon la taille des carreaux ou l’IIS.

Conclusions:

L’ampleur de l’activation corticale pendant le traitement du contraste visuel est dépendant de la taille des carreaux et les carreaux de 120' sont optimaux pour l’étude des fonctions corticales visuelles neuromagnétiques utilisant l’occlusion centrale. L’activation neuronale correspondante a une période réfractaire courte de moins de 0,16 s. Nous avons également constaté un chevauchement significatif des zones de représentation corticale pour des carreaux de tailles différentes ou des IISs différents.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2005

References

1. Török, B, Meyer, M, Wildberger, H. The influence of pattern size onamplitude, latency and wave form of retinal and cortical potentials elicited by checkerboard pattern reversal and stimulus onset-offset. Electroenceph Clin Neurophysiol 1992; 84: 1319.CrossRefGoogle ScholarPubMed
2. Plant, GT, Hess, RF. Temporal frequency discrimination in opticneuritis and multiple sclerosis. Brain 1985; 108: 647676.CrossRefGoogle Scholar
3. Novak, GP, Wiznitzer, M, Kurtzberg, D, Giesser, BS, Vaughan, HG Jr. The utility of visual evoked potentials using hemifield stimulation and several check sizes in the evaluation of suspected multiple sclerosis. Electroenceph Clin Neurophysiol 1988; 71: 19.CrossRefGoogle ScholarPubMed
4. Merigan, WH, Maunsell, JHR. How parallel are the primate visual pathways? Ann Rev Neurosci 1993; 16: 369402.CrossRefGoogle ScholarPubMed
5. Oelkers, R, Grosser, K, Lang, E, et al. Visual evoked potentials inmigraine patients: alterations depend on pattern spatial frequency. Brain 1999; 122: 11471155.CrossRefGoogle ScholarPubMed
6. Kergoat, H, Kergoat, M-J, Justino, L, et al. Visual retinocortical function in dementia of the Alzheimer type. Gerontology 2002; 48: 197203.CrossRefGoogle ScholarPubMed
7. Kurita-Tashima, S, Tobimatsu, S, Nakayama-Hiromatsu, M, Kato, M. Effect of check size on the pattern reversal visual evoked potential. Electroenceph Clin Neurophysiol 1991; 80: 161166.CrossRefGoogle ScholarPubMed
8. Hämäläinen, M, Hari, R, Ilmoniemi, RJ, Knuutila, J, Lounasmaa, OV. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 1993; 65: 413497.CrossRefGoogle Scholar
9. Barrett, G, Blumhardt, L, Halliday, AM, Halliday, E, Kriss, A. Aparadox in the lateralisation of the visual evoked response. Nature 1976; 261: 253255.CrossRefGoogle Scholar
10. Nakamura, A, Kakigi, R, Hoshiyama, M, et al. Visual evoked cortical magnetic fields to pattern reversal stimulation. Cogn Brain Res 1997; 6: 922.CrossRefGoogle ScholarPubMed
11. Brecelj, J, Kakigi, R, Koyama, S, Hoshiyama, M. Visual evokedmagnetic responses to central and peripheral stimulation: simultaneous VEP recordings. Brain Topogr 1998; 10: 227237.Google ScholarPubMed
12. Ahlfors, SP, Ilmoniemi, RJ, Hämäläinen, MS. Estimates of visuallyevoked cortical currents. Electroenceph Clin Neurophysiol 1992; 82: 225236.CrossRefGoogle ScholarPubMed
13. Nakamura, M, Kakigi, R, Okusa, T, Hoshiyama, M, Watanabe, K. Effects of check size on pattern reversal visual evoked magneticfield and potential. Brain Res 2000; 872: 7786.CrossRefGoogle Scholar
14. Hashimoto, T, Kashii, S, Kikuchi, M, et al. Temporal profile of visualevoked responses to pattern-reversal stimulation analyzed with a whole-head magnetometer. Exp Brain Res 1999; 125: 375382.CrossRefGoogle ScholarPubMed
15. Chiappa, KH, Gill, EM, Lentz, KE. Effect of check size on P100latency. Electroenceph Clin Neurophysiol 1985; 61: 29P–30P.Google Scholar
16. Silveira, LC, Perry, VH. The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina. Neuroscience 1991; 40: 217237.CrossRefGoogle ScholarPubMed
17. Anderson, SJ, Burr, DC. Receptive field size of human motion detection units. Vision Res 1987; 27: 621635.CrossRefGoogle ScholarPubMed
18. Fylan, F, Holliday, IE, Singh, KD, Anderson, SJ, Harding, GFA. Magnetoencephalographic investigation of human cortical area V1 using color stimuli. Neuroimage 1997; 6: 4757.CrossRefGoogle ScholarPubMed
19. Trick, GL, Wintermeyer, DH. Spatial and temporal frequency tuning of pattern-reversal retinal potentials. Invest Ophthalmol Vis Sci 1982; 23: 774779.Google ScholarPubMed
20. Bodis-Wollner, I, Brannan, JR, Nicoll, J, Frkovic, S, Mylin, LH. Ashort latency cortical component of the foveal VEP is revealed by hemifield stimulation. Electroenceph Clin Neurophysiol 1992; 84: 201208.CrossRefGoogle Scholar
21. Onofrj, M, Fulgente, T, Thomas, A, et al. Visual evoked potentials generator model derived from different spatial frequency stimuli of visual field regions and magnetic resonance imaging coordinates of V1, V2, V3 areas in man. Int J Neurosci 1995; 83: 213239.CrossRefGoogle ScholarPubMed
22. Allison, T, Hume, AL, Wood, CC, Goff, WR. Developmental and aging changes in somatosensory, auditory and visual evoked potentials. Electroenceph Clin Neurophysiol 1984; 58: 1424 CrossRefGoogle ScholarPubMed
23. Previc, FH. The neurophysiological significance of the N1 and P1 components of the visual evoked potential. Clin Vision Sci 1988; 3: 195202.Google Scholar
24. Stockard, JJ, Hughes, JF, Sharbrough, FW. Visually evoked potentialsto electronic pattern reversal: latency variations with gender, age, and technical factors. Am J EEG Technol 1979; 19: 171204.Google Scholar
25. Celesia, GG, Bodis-Wollner, I, Chatrian, GE, et al. Recommended standards for electroretinograms and visual evoked potentials.Report of an IFCN Committee. Electroenceph Clin Neurophysiol 1993; 87: 421436.CrossRefGoogle ScholarPubMed
26. Uusitalo, MA, Jousmäki, V, Hari, R. Activation trace lifetime ofhuman cortical responses evoked by apparent visual motion. Neurosci Lett 1997; 224: 4548.CrossRefGoogle Scholar
27. Tzelepi, A, Ioannides, AA, Poghosyan, V. Early (N70m)neuromagnetic signal topography and striate and extrastriate generators following pattern onset quadrant stimulation. Neuroimage 2001; 13: 702718.CrossRefGoogle ScholarPubMed
28. Strucl, M, Prevec, TS, Zidar, I. Dependence of visual evokedpotentials on change of stimulated retinal area associated with different pattern displacements. Electroenceph Clin Neurophysiol 1982; 53: 634642.CrossRefGoogle Scholar
29. Maier, J, Dagnelie, G, Spekreijse, H, van Dijk, BW. Principal components analysis for source localization of VEPs in man. Vision Res 1987; 27: 165177.CrossRefGoogle ScholarPubMed
30. Hoshiyama, M, Kakigi, R. Effects of attention on pattern-reversalvisual evoked potentials: foveal field stimulation versus peripheral field stimulation. Brain Topogr 2001; 13: 293298.CrossRefGoogle ScholarPubMed
31. Vleugels, L, Charlier, M, van Nunen, A, et al. Temporal resolution deficits in the visual fields of MS patients. Vision Res 1999; 39: 24292438.CrossRefGoogle ScholarPubMed
You have Access
8
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Optimal Check Size and Reversal Rate to Elicit Pattern-reversal MEG Responses
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Optimal Check Size and Reversal Rate to Elicit Pattern-reversal MEG Responses
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Optimal Check Size and Reversal Rate to Elicit Pattern-reversal MEG Responses
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *