Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-23T12:35:18.992Z Has data issue: false hasContentIssue false

Normative Data for the Stroop Color Word Test for a North American Population

Published online by Cambridge University Press:  23 September 2014

Sarah A. Morrow*
Affiliation:
Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
*
Department of Clinical Neurological Sciences, Western University, b10-105, LHSC-UH, 339 Windermere Road, London, Ontario, N6a 5a5, Canada. Email: smorrow8@uwo.ca.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Cognitive impairment in multiple sclerosis (MS) often involves attentional deficits. The Stroop colour word test, a measure of attention, lacks current normative data for an english-speaking North american MS population. Further some authors suggest the Stroop actually measures processing speed.

Objective:

To generate normative data for the Stroop colour word test that can be used for a Canadian or North american MS population and to examine the relationship between processing speed tests - the Paced auditory Serial addition Test (PASAT) and Symbol Digit Modalities Test (SDMT) - and the Stroop.

Results:

Data from 146 healthy subjects aged 18-56 was collected. age was significantly although weakly correlated with general intelligence (r=0.168, p=0.043) assessed with the North american adult Reading Test (NAART), and education (r=-0.313, p<0.001). No demographic variables were associated with SDMT or PASAT. age had a low-moderate negative correlation (r=-0.403, p<0.001) with Stroop scores. The mean (±standard deviation, SD) Stroop score was 45.4(10.4). The z-score can thus be calculated as [(X-45.4)/10.4]. if adjusted for age, Xadj = [X-(-0.47)(age-37.5)] and is substituted for X. in a comparison MS population consisting of 75 randomly selected patients from the MS Cognitive clinic, Stroop and PASAT performance were not related. a relationship existed between Stroop and SDMT scores but only 12.2% of the Stroop score variance was explained by the SDMT. Therefore, the Stroop measures selective attention independently of processing speed.

Conclusion:

This data can be used to determine impaired attention in MS patients.

Résumé

RÉSUMÉContexte:

Les troubles cognitifs dans la sclérose en plaques (SP) incluent souvent des déficits de l'attention. On ne possède pas de données normatives actuelles pour le test mot-couleur de Stroop, une mesure de l'attention, pouvant être utilisées chez une population nord-américaine de langue anglaise composée de patients atteints de la SP. De plus, certains auteurs suggèrent que le Stroop mesure réellement la rapidité de traitement.

Objectif:

Le but de l'étude était de générer des données normatives pour le test de Stroop qui puissent être utilisées chez une population canadienne ou nord-américaine de patients atteints de la SP et d'examiner la relation entre les tests de rapidité de traitement - le Paced Auditory Serial Addition Test (PASAT) et le Symbol Digit Modalities Test (SDMT) - et le Stroop.

Résultats:

Les données de 146 sujets sains âgés de 18 à 56 ans ont été recueillies. L'âge était significativement corrélé, bien que la corrélation soit faible, à l'intelligence générale (r = 0,168 ; p = 0,043) évaluée au moyen du North American Adult Reading Test (NAART) et au niveau de scolarité (r = -0,313 ; p ˂ 0,001). Aucune variable démographique n'était associée au SDMT ou au PASAT. L'âge était modérément corrélé négativement (r = -0,403 ; p ˂ 0,001) au Stroop. La moyenne (± l'écart type, ÉT) du score au test de Stroop était de 45,4 (ÉT 10,4). Le score z peut donc être calculé ainsi : [(X – 45,4)/10,4] et, après ajustement pour l'âge, Xa = [X – (0,47)(âge – 37,5)] Xa étant substitué à X. La performance au Stroop et au PASAT n'étaient pas reliées chez une population de 75 patients atteints de SP choisis au hasard dans une clinique de psychologie cognitive dédiée aux patients atteints de SP. Il existait une relation entre le test de Stroop et le test SDMT, mais seulement 12,2% de la variance du score au test de Stroop était expliquée par le SDMT. Le Stroop mesure donc l'attention sélective indépendamment de la rapidité de traitement.

Conclusion:

Ces données peuvent être utilisées pour identifier une altération de l'attention chez des patients atteints de SP.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Benedict, RH, Fischer, JS, Archibald, CJ, et al. Minimal neuropsychological assessment of MS patients: a consensus approach. Clin Neuropsychol. 2002Aug;16(3):38197.Google Scholar
2. Rao, SM. Neuropsychology of multiple sclerosis. Curr Opin Neurol. 1995Jun;8(3):21620.Google Scholar
3. Rao, SM. A manual for the brief repeatable battery of neuropsychological tests in Multiple Sclerosis; 1991.Google Scholar
4. Benedict, RH, Cookfair, D, Gavett, R, et al. Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). J int Neuropsychol Soc. 2006 Jul;12(4):54958.Google Scholar
5. Vitkovitch, M, Bishop, S, Dancey, C, Richards, A. Stroop interference and negative priming in patients with multiple sclerosis. Neuropsychologia. 2002;40(9):15706.Google Scholar
6. Golden, CJ. Stroop Colour and Word Test: a Manual for Clinical and Experimental Uses. Chicago, Illinois: Skoelting; 1978.Google Scholar
7. MacLeod, CM. Half a century of research on the Stroop effect: an integrative review. Psychol Bull. 1991 Mar;109(2):163203.Google Scholar
8. MacLeod, CM, MacDonald, PA. Interdimensional interference in the Stroop effect: uncovering the cognitive and neural anatomy of attention. Trends Cogn Sci. 2000 Oct 1;4(10):38391.Google Scholar
9. Gazzaley, A, Cooney, JW, Mcevoy, K, Knight, RT,D'Esposito, M. Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci. 2005 Mar;17(3):50717.Google Scholar
10. Stroop, JR. Studies of interference in serial verbal reaction. Clin Neuropsychol. 1935;11:8790.Google Scholar
11. Golden, CJ, Freshwater, SM. Stroop Color and Word Test Adult Version. A Manual for Clinical and Experimental Uses. Catalog No. 30150M ed. Nova Southeastern University: Stoelting; 2002.Google Scholar
12. Ivnik, RJ, Smith, GE, Lucas, JA, Tangalos, EG, Kokmen, E, Petersen, RC. Free and cued selective reminding test: MOANS norms. J Clin exp Neuropsychol. 1997 Oct;19(5):67691.Google Scholar
13. Steinberg, B, Bieliauskas, L. introduction to the special edition: IQ-based MOANS norms for multiple neuropsychological instruments. Clin Neuropsychol. 2005 Sep-Dec;19(3–4):2779.Google Scholar
14. Graf, P, Uttl, B, Tuokko, H. Color- and picture-word Stroop tests: performance changes in old age. J Clin Exp Neuropsychol. 1995 May;17(3):390415.Google Scholar
15. Uttl, B, Graf, P. Color-Word Stroop test performance across the adult life span. J Clin Exp Neuropsychol. 1997 Jun;19(3):40520.Google Scholar
16. Ivnik, RJ, Malec, JF, Smith, GE, Tangalos, EG. Neuropsychological test norms above age 55: COWAT, VNT, MAE Token, WRAT-R Reading, AMNART, Stroop, TMT and JLO. Clin Neuropsychol. 1996(10):26278.Google Scholar
17. Comalli, PE Jr., Wapner, S, Werner, H. Interference effects of Stroop color-word test in childhood, adulthood, and aging. J Genet Psychol. 1962 Mar;100:4753.Google Scholar
18. Das, JP. Changes in Stroop-Test responses as a function of mental age. Br J Soc Clin Psychol. 1970 Feb;9(1):6873.Google Scholar
19. Foong, J, Rozewicz, L, Quaghebeur, G, et al. Executive function in multiple sclerosis. The role of frontal lobe pathology. Brain. 1997 Jan;120 (Pt 1):1526.Google Scholar
20. Morey, CC, Elliott, EM, Wiggers, J, Eaves, SD, Shelton, JT, Mall, JT. Goal-neglect links Stroop interference with working memory capacity. Acta Psychol (Amst). Oct;141(2):25060.Google Scholar
21. Strober, L, Englert, J, Munschauer, F, Weinstock-Guttman, B, Rao, S, Benedict, RH. Sensitivity of conventional memory tests in multiple sclerosis: comparing the Rao Brief Repeatable Neuropsychological Battery and the Minimal Assessment of Cognitive Function in MS. Mult Scler. 2009 Sep;15(9):107784.Google Scholar
22. Smith, A. Symbol Digit Modalities Test. Manual. Los Angeles: Western Psychological Services; 1982.Google Scholar
23. Rao, SM, Leo, GJ, bernardin, L, Unverzagt, F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology. 1991 May;41(5):68591.Google Scholar
24. Benedict, RH, Fishman, I, McClellan, MM, Bakshi, R, Weinstock-Guttman, B. Validity of the Beck Depression Inventory-Fast Screen in multiple sclerosis. Mult Scler. 2003 Aug;9(4):3936.Google Scholar
25. Krupp, LB, LaRocca, NG, Muir-Nash, J, Steinberg, AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989 Oct;46(10):11213.Google Scholar
26. Blair, JR, Spreen, O. Predicting premorbid IQ: A revision of the National Adult Reading Tes. Clinical Neuropscychologist. 1989; 2:12936.Google Scholar
27. Strauss, E, Sherman, EMS, Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. 3rd ed. New York: Oxford University Press; 2006.Google Scholar
28. Benedict, RH, Zivadinov, R. Reliability and validity of neuropsychological screening and assessment strategies in MS. J Neurol. 2007 May;254 Suppl 2:ii225.Google Scholar
29. Fischer, JS, Rudick, RA, Cutter, GR, Reingold, SC. The Multiple Sclerosis Functional Composite Measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS Society Clinical Outcomes Assessment Task Force. Mult Scler. 1999 Aug;5(4):24450.Google Scholar
30. Bobholz, JA, Rao, SM, Lobeck, L, et al. fMRI study of episodic memory in relapsing-remitting MS: correlation with T2 lesion volume. Neurology. 2006 Nov 14;67(9):16405.Google Scholar
31. Rocca, MA, Valsasina, P, Ceccarelli, A, et al. Structural and functional MRI correlates of Stroop control in benign MS. Hum Brain Mapp. 2009 Jan;30(1):27690.Google Scholar
32. Rovaris, M, Filippi, M, Falautano, M, et al. Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology. 1998 Jun;50(6):16018.Google Scholar
33. Gadea, M, Martinez-Bisbal, MC, Marti-Bonmati, L, et al. Spectroscopic axonal damage of the right locus coeruleus relates to selective attention impairment in early stage relapsing-remitting multiple sclerosis. Brain. 2004 Jan;127(Pt 1):8998.Google Scholar
34. Steinberg, BA, Bieliauskas, LA, Smith, GE, Ivnik, RJ. Mayo's Older Americans Normative Studies: Age- and IQ-adjusted Norms for the Trail-Making Test, the Stroop Test, and MAE Controlled Oral Word Association Test. Clin Neuropsychol. 2005 Sep-Dec;19(3–4):32977.Google Scholar
35. Bodling, AM, Denney, DR, Lynch, SG. Cognitive aging in patients with multiple sclerosis: a cross-sectional analysis of speeded processing. Arch Clin Neuropsychol. 2009 Dec;24(8):7617.Google Scholar
36. Parmenter, BA, Weinstock-Guttman, B, Garg, N, Munschauer, F, Benedict, RH. Screening for cognitive impairment in multiple sclerosis using the Symbol digit Modalities Test. Mult Scler. 2007 Jan;13(1):527.Google Scholar
37. Morrow, SA, O'Connor, PW, Polman, CH, et al. Evaluation of the symbol digit modalities test (SDMT) and MS neuropsychological screening questionnaire (MSNQ) in natalizumabtreated MS patients over 48 weeks. Mult Scler. Nov;16(11):138592.Google Scholar
38. Benedict, RH, Duquin, JA, Jurgensen, S, et al. Repeated assessment of neuropsychological deficits in multiple sclerosis using the Symbol Digit Modalities Test and the MS Neuropsychological Screening Questionnaire. Mult Scler. 2008 Aug;14(7):9406.Google Scholar
39. Lynch, SG, Dickerson, KJ, Denney, DR. Evaluating processing speed in multiple sclerosis: a comparison of two rapid serial processing measures. Clin Neuropsychol. Aug;24(6):96376.Google Scholar
40. Denney, DR, Lynch, SG. The impact of multiple sclerosis on patients' performance on the Stroop Test: processing speed versus interference. J Int Neuropsychol Soc. 2009 May;15(3):4518.Google Scholar
41. Bodling, AM, Denney, DR, Lynch, SG. Rapid serial processing in patients with multiple sclerosis: the role of peripheral deficits. J Int Neuropsychol Soc. 2008 Jul;14(4):64650.Google Scholar