Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-20T22:05:44.256Z Has data issue: false hasContentIssue false

The ICV Sign as a Marker of Increased Cerebral Blood Transit Time

Published online by Cambridge University Press:  23 September 2014

Bijoy K. Menon*
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
Helin Daniel Bai
Affiliation:
Department of Radiology, University of Calgary, Calgary, Alberta, Canada
Jayesh Modi
Affiliation:
Department of Radiology, University of Calgary, Calgary, Alberta, Canada
Andrew M. Demchuk
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
Mark Hudon
Affiliation:
Department of Radiology, University of Calgary, Calgary, Alberta, Canada
Mayank Goyal
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada Department of Radiology, University of Calgary, Calgary, Alberta, Canada
Timothy W. J. Watson
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
*
Department of Clinical Neurosciences, University of Calgary, 1403, 29th Street NW, Calgary, Alberta, T2N 2T9, Canada. Email: Bijoy.Menon@albertahealthservices.ca.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective/Background:

We describe the internal cerebral vein (ICV) sign, which is a hypo-opacification of the ICV on computed tomogram angiography (CTA) as a new marker of increased cerebral blood transit-time in ipsilateral internal carotid artery occlusions (ICAO).

Methods:

A retrospective analysis of 153 patients with acute unilateral M1 middle cerebral artery (MCA) occlusions ± ICAOs was performed. The degree of contrast opacification of the ICV on the ipsilesional side was compared to that of the unaffected side.

Results:

Of 153 patients in our study, 135 had M1 MCA occlusions ± intra-cranial ICAO (M1±iICAO) and 18 had isolated extracranial ICAO (eICAO). In the patients with proximal M1±iICAO, 57/65 (87.1%) showed the ICV sign. Of the 8 patients without the ICV sign in this group, 6 had prominent lenticulostriate arteries arising from the non-occluded M1 segment, 1 had a recurrent artery of Huebner, and 1 had filling of distal ICA/M1 segment through prominent Circle of Willis collaterals. For the 70 patients with isolated distal M1±iICAO, 7/70 (10%) showed the ICV sign, with all 7 showing occluded lenticulostriate arteries. Of the patients with eICAO, 8/18 showed the ICV sign, all 8 with the ICV sign had poor Circle of Willis collaterals.

Conclusions:

The ICV sign correlates well with presence of proximal M1±iICAO in patients with either occluded lenticulostriate arteries or poor Circle of Willis collaterals. In patients with eICAO, the sign correlates with reduced Circle of Willis collaterals and may be a marker of increased ipsilateral cerebral blood transit time.

Résumé:

Résumé:Contexte et objectif:

Nous décrivons le signe de la veine cérébrale interne (VCI), visualisé comme une hypo-opacification de la veine cérébrale interne (VIC) à l'angiographie par tomodensitométrie (ACT), comme un nouveau marqueur de l'augmentation du temps de transit du flux sanguin cérébral dans les occlusions de la carotide interne ipsilatérale (OCII).

Méthode:

Nous avons effectué une analyse rétrospective des dossiers de 153 patients atteints d'une occlusion aiguë unilatérale du segment M1 de l'artère cérébrale moyenne (ACM) avec ou sans OCII. Le degré d'opacification de la VCI du même côté que la lésion a été comparé à celui du côté sans lésion.

Résultats:

Parmi ces 153 patients, 135 avaient une occlusion du segment M1 de l'ACM avec ou sans OCII intracrânienne (M1 ± OCIIi) et 18 avaient une OCII extracrânienne isolée (OCIIe). Chez les patients atteints d'une occlusion du segment M1 proximal ± OCIIi, 57/65 (87,1%) présentaient le signe de la VCI et 6 des 8 patients sans signe de la VCI avaient des artères lenticulostriées proéminentes prenant naissance d'un segment M1 non occlus, 1 avait une artère récurrente de Huebner et 1 avait un remplissage de la carotide interne/du segment distal M1 par l'intermédiaire de collatérales proéminentes de l'hexagone de Willis. Parmi les 70 patients présentant une occlusion du segment M1 ± OCIIi 7 patients (10%) présentaient le signe de la VCI et tous les 7 avaient des artères lenticulostriée occluses. Parmi les 18 patients atteints de OCIIe, 8 présentaient le signes de la VCI et tous les 8 avaient une mauvaise circulation collatérale au niveau de l'hexagone de Willis.

Conclusions:

Nous avons observé une bonne corrélation entre le signe de la VCI et la présence d'occlusion de la M1 proximale ± OCIIi chez les patients porteurs d'artères lenticulostriées occluses ou d'une mauvaise circulation collatérale au niveau de l'hexagone de Willis. Chez les patients atteints d'OCIIe, il existe une bonne corrélation entre le signe de la VCI et une circulation collatérale diminuée au niveau de l'hexagone de Willis, ce qui pourrait être un marqueur d'un temps de transit du flux sanguin cérébral ipsilatéral augmenté.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Yonas, H, Good, WF, Gur, D, et al. Mapping cerebral blood flow by xenon-enhanced computed tomography: clinical experience. Radiology. 1984;152(2):435–42.CrossRefGoogle ScholarPubMed
2. Neirinckx, RD, Canning, LR, Piper, IM, et al. Technetium-99m d, l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med. 1987;28(2): 191202.Google Scholar
3. Kucharczyk, J, Mintorovitch, J, Asgari, HS, Moseley, M. Diffusion/perfusion MR imaging of acute cerebral ischemia. Magn Reson Med. 1991;19(2):3115.Google Scholar
4. Hamberg, LM, Hunter, GJ, Halpern, EF, Hoop, B, Gazelle, GS, Wolf, GL. Quantitative high-resolution measurement of cerebrovascular physiology with slip-ring CT. AJNR Am J Neuroradiol. 1996;17(4):639–50.Google Scholar
5. Latchaw, RE, Yonas, H, Hunter, GJ, et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia: A scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke. 2003;34 (4):1084–104.CrossRefGoogle Scholar
6. Grond, M, Rudolf, J, Schneweis, S, et al. Feasibility of source images of computed tomographic angiography to detect the extent of ischemia in hyperacute stroke. Cerebrovasc Dis. 2002;13(4): 2516.Google Scholar
7. Bhatia, R, Bal, SS, Shobha, N, et al. CT angiographic source images predict outcome and final infarct volume better than noncontrast CT in proximal vascular occlusions. Stroke. 2011;42(6): 157580.CrossRefGoogle ScholarPubMed
8. Dorn, F, Liebig, T, Muenzel, D, et al. Order of CT stroke protocol (CTA before or after CTP): impact on image quality. Neuroradiology. 2011;54(2):105–12.CrossRefGoogle ScholarPubMed
9. Taveras, JM. Angiography in Neuroradiology. 3rd edition ed: Williams & Wilkins; 1996.Google Scholar
10. Meder, JF, Chiras, J, Roland, J, Guinet, P, Bracard, S, Bargy, F. Venous territories of the brain. J Neuroradiol. 1994;21(2):118–33.Google Scholar
11. Kido, DK, Baker, RA. Normal Cerebral Vascular Anatomy. Boston: Little, Brown, and Company; 1983.Google Scholar
12. Rosset, A, Spadola, L, Ratib, O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging. 2004;17(3):205–16.Google Scholar
13. Yonas, H, Smith, HA, Durham, SR, Pentheny, SL, Johnson, DW. Increased stroke risk predicted by compromised cerebral blood flow reactivity. J Neurosurg. 1993;79(4):4839.Google Scholar
14. Powers, WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29(3):231–40.CrossRefGoogle ScholarPubMed