Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T06:50:14.914Z Has data issue: false hasContentIssue false

Etiology of Parkinson's Disease

Published online by Cambridge University Press:  02 December 2014

A. Jon Stoessl*
Affiliation:
Neurodegenerative Disorders Centre, Vancouver Hospital & Health Sciences Centre, Vancouver, British Columbia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Controversy over the etiology and pathogenesis of Parkinson's disease (PD) has continued for many years and while the details have changed, the uncertainty persists. Although heritability was most emphatically refuted a decade ago by many investigators, recent progress firmly indicates that genetic factors at least play a role, although probably to a variable degree from one individual to another. Evidence for a variety of other etiological factors is amassed from epidemiological studies, animal models, molecular and cellular biology. Genetic factors, infectious and immunological abnormalities, the effects of ageing, toxins (endogenous as well as exogenous) and other environmental factors may all contribute to the development of PD. Loss of nigral dopaminergic neurons may be mediated by varying combinations of oxidative free radical toxicity, impaired mitochondrial function, “weak excitotoxicity” and abnormal handling of cytoskeletal proteins, all of which may shift the balance regulating apoptotic cell death.

Résumé

RÉSUMÉ

La controverse entourant l'étiologie et la pathogenèse de la maladie de Parkinson (MP) dure depuis plusieurs années et, bien que les détails ont changé, l'incertitude persiste. Bien que l'héritabilité de la maladie ait été réfutée avec emphase par plusieurs investigateurs il y a une dizaine d'années, des progrès récents indiquent clairement que des facteurs génétiques sont en cause, probablement à des degrés variables d'un individu à l'autre. Des données sur une variété d'autres facteurs étiologiques, provenant d'études épidémiologiques, de modèles animaux, de la biologie moléculaire et cellulaire, s'accumulent. Les facteurs génétiques, anomalies infectieuses et immunologiques, les effets du vieillissement, les toxines (endogènes et exogènes) et les autres facteurs environnementaux peuvent contribuer au développement de la MP. La perte de neurones dopaminergiques dans la substance noire peut être médiée par différentes combinaisons d'effets toxiques oxydatifs dus à des radicaux libres, une fonction mitochondriale altérée, une “faible excitotoxicité” et un métabolisme anormal des protéines du cytosquelette, qui peuvent tous déséquilibrer la régulation de la mort cellulaire par apoptose.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 1999

References

1. Rajput, AH. Frequency and cause of Parkinson’s disease. Can J Neurol Sci 1992; 19 (Suppl. 1): 103107.Google Scholar
2. Rajput, AH, Rozdilsky, B, Rajput, A. Accuracy of clinical diagnosis in Parkinsonism-a prospective study. Can J Neurol Sci 1991; 18: 275278.Google Scholar
3. Semchuk, KM, Love, EJ. Effects of agricultural work and other prox-derived case-control data on Parkinson’s disease risk estimates. Am J Epidemiol 1995; 141: 747754.CrossRefGoogle ScholarPubMed
4. Ward, CD, Duvoisin, RC, Ince, SE, Nutt, JD, Eldridge, R, Calne, DB. Parkinson’s disease in 65 pairs of twins and in a set of quadruplets. Neurology 1983; 33: 815824.Google Scholar
5. Vieregge, P, Schiffke, KA, Friedrich, HJ, Muller, B, Ludin, HP. Parkinson’s disease in twins. Neurology 1992; 42: 14531461.Google Scholar
6. Burn, DJ, Mark, MH, Playford, ED, et al. Parkinson’s disease in twins studied with 18F-dopa and positron emission tomography. Neurology 1992; 42: 18941900.CrossRefGoogle ScholarPubMed
6a. Tanner, CM, Ottman, R, Goldman, SM, Ellenberg, J, Chan, P, Mayeux, R, Langston, JW. Parkinson disease in twins: an etiologic study. JAMA 1999; 281: 341346.CrossRefGoogle ScholarPubMed
7. Payami, H, Larsen, K, Bernard, S, Nutt, J. Increased risk of Parkinson’sdisease in parents and siblings of patients. Ann Neurol 1994; 36: 659661.CrossRefGoogle Scholar
8. Golbe, LI, Di Iorio, G, Bonavita, , Miller, DC, Duvoisin, RC. A large kindred with autosomal dominant Parkinson’s disease. Ann Neurol 1990; 27: 276282.Google Scholar
9. Polymeropoulos, MH, Lavedan, C, Leroy, E, et al. Mutation in the asynuclein gene identified in families with Parkinson’s disease. Science 1997; 276: 20452047.Google Scholar
10. Kruger, R, Kuhn, W, Muller, T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genetics 1998; 18: 106108.CrossRefGoogle ScholarPubMed
11. Scott, WK, Staijich, JM, Yamaoka, LH, et al. Genetic complexity and Parkinson’s disease. Science 1997; 277: 387388.Google Scholar
12. Gasser, T, Muller-Myhsok, B, Wszolek, ZK, et al. Genetic complexity and Parkinson’s disease. Science 1997; 277: 388389.Google Scholar
13. Chan, P, Jiang, X, Forno, LS, Di Monte, DA, Tanner, CM, Langston, JW. Absence of mutations in the coding region of the alpha-synu-clein gene in pathologically proven Parkinson’s disease. Neurology 1998; 50: 11361137.Google Scholar
14. Gasser, T, Muller-Myhsok, B, Wszolek, ZK, et al. A susceptibility locus for Parkinson’s disease maps to chromosome 2p13. Nature Genetics 1998; 18: 262265.Google Scholar
14a. Swerdlow, RH, Parks, JK, Miller, SW et al. Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann. Neurol. 1996; 40: 663671.CrossRefGoogle ScholarPubMed
15. Shimoda-Matsubayashi, S, Hattori, T, Matsumine, H, et al. Mn SOD activity and protein in a patient with chromosome 6-linked autosomal recessive parkinsonism in comparison with Parkinson’s disease and control. Neurology 1997; 49: 12571262.Google Scholar
16. Kitada, T, Asakawa, S, Hattori, N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392: 605608.Google Scholar
16a. Leroy, E, Boyer, R, Auburger, G et al. The ubiquitin pathway in Parkinson’s disease. Nature 1998; 395: 451452.Google Scholar
17. Kurth, JH, Kurth, MC, Poduslo, SE, Schwankhaus, JD. Association of a monoamine oxidase B allele with Parkinson’s disease. Ann Neurol 1993; 33: 368372.Google Scholar
18. Parboosingh, JS, Rousseau, M, Rogan, F, et al. Absence of mutations in superoxide dismutase and catalase genes in patients with Parkinson’s disease. Arch Neurol 1995; 52: 11601163.Google Scholar
19. Gasser, T, Wszolek, ZK, Trofatter, J, et al. Genetic linkage studies in autosomal dominant parkinsonism: evaluation of seven candidate genes. Ann Neurol 1994; 36: 387396.CrossRefGoogle ScholarPubMed
20. Schoenberg, BS, Anderson, DW, Haerer, AF. Prevalence of Parkinson’s disease in the biracial population of Copiah County, Mississippi. Neurology 1985; 35: 841845.Google Scholar
21. Jendroska, K, Olasode, BJ, Daniel, SE, et al. Incidental Lewy body disease in black Africans. Lancet 1994; 344: 882883.Google Scholar
22. Wang, SJ, Fuh, JL, Teng, EL, et al. A door-to-door survey of Parkinson’s disease in a Chinese population in Kinmen. Arch Neurol 1996; 53: 6671.CrossRefGoogle Scholar
23. Zhang, Z-X, Roman, GC. Worldwide occurrence of Parkinson’s disease: an updated review. Neuroepidemiol 1993; 12: 195208.Google Scholar
24. Calne, S, Schoenberg, B, Martin, W, Uitti, RJ, Spencer, P, Calne, DB. Familial Parkinson’s disease: possible role of environmental factors. Can J Neurol Sci 1987; 14: 303305.CrossRefGoogle ScholarPubMed
25. Rajput, AH, Uitti, RJ, Stern, W, et al. Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson’s disease. Can J Neurol Sci 1987; 14: 414418.Google Scholar
26. Butterfield, PG, Valanis, BG, Spencer, PS, Lindeman, CA, Nutt, JG. Environmental antecedents of young-onset Parkinson’s disease. Neurology 1993; 43: 11501158.Google Scholar
27. Hubble, JP, Cao, T, Hassanein, RES, Neuberger, JS, Koller, WC. Risk factors for Parkinson’s disease. Neurology 1993; 43: 16931697.Google Scholar
28. Semchuk, KM, Love, EJ, Lee, RG. Parkinson’s disease: a test of the multifactorial etiologic hypothesis. Neurology 1993; 43: 11731180.Google Scholar
29. Stern, M, Dulaney, E, Gruber, SB, et al. The epidemiology of Parkinson’s disease: a case-control study of young-onset and old-onset patients. Arch Neurol 1991; 48: 903907.Google Scholar
30. Fleming, L, Mann, JB, Bean, J, Briggle, T, Sanchez-Ramos, JR. Parkinson’s disease and brain levels of organochlorine pesticides. Ann Neurol 1994; 36: 100103.CrossRefGoogle ScholarPubMed
31. Wang, W-z, Fang, X-h, Cheng, X-m, Jiang, D-h, Lin, Z-j. A case-control study on the environmental risk factors of Parkinson’s disease in Tianjin, China. Neuroepidemiology 1993; 12: 209218.Google Scholar
32. Chaturvedi, S, Ostbye, T, Stoessl, AJ, Merskey, H, Hachinski, V. Environmental exposures in elderly Canadians with Parkinson’s disease. Can J Neurol Sci 1995; 22: 232234.Google Scholar
33. Godwin-Austen, RG, Leigh, PN, Marmot, MG, Stern, GM. Smoking and Parkinson’s disease. J Neurol Neurosurg Psychiatry 1982; 45: 577581.Google Scholar
34. Mayeux, R, Tang, MX, Marder, K, Cote, LJ, Stern, Y. Smoking and Parkinson’s disease. Mov Disord 1994; 9: 207212.Google Scholar
35. Morens, DM, Grandinetti, A, Reed, D, White, LR, Ross, GW. Cigarette smoking and protection from Parkinson’s disease: false association or etiologic clue? Neurology 1995; 45: 10411051.Google Scholar
36. Riggs, JE. Cigarette smoking and Parkinson disease: the illusion of a neuroprotective effect. Clin Neuropharm 1992; 15: 8899.Google Scholar
37. Grandinetti, A, Morens, DM, Reed, D, MacEachern, D. Prospective study of cigarette smoking and the risk of developing idiopathic Parkinson’s disease. Am J Epidemiol 1994; 139: 11291138.Google Scholar
38. Williams, DB, Annegers, JF, Kokmen, E, O’Brien, PC, Kurland, LT. Brain injury and neurologic sequelae: a cohort study of dementia, parkinsonism, and amyotrophic lateral sclerosis. Neurology 1991; 41: 15541557.Google Scholar
39. Lin, SK, Lu, CS, Vingerhoets, FJG, et al. Isolated involvement of substantia nigra in acute transient Parkinsonism: MRI and PET observations. Parkinsonism Rel Disord 1995; 1: 6773.Google Scholar
40. Takahashi, M, Yamada, T, Nakajima, S, Nakajima, K, Yamamoto, T, Okada, H. The substantia nigra is a major target for neurovirulent influenza A virus. J Exp Med 1995; 181: 21612169.Google Scholar
41. McGeer, PL, Itagaki, S, Boyes, BE, McGeer, EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease of brains. Neurology 1988; 38: 12851291.Google Scholar
42. Defazio, G, Daltoso, R, Benvegnu, D, Minozzi, MC, Cananzi, AR, Leon, A. Parkinsonian serum carries complement-dependent toxicity for rat mesencephalic dopaminergic neurons in culture. Brain Res 1994; 633: 206212.Google Scholar
43. McGeer, PL, McGeer, EG, Suzuki, JS. Aging and extrapyramidal function. Arch Neurol 1977; 34: 3335.Google Scholar
44. Kish, SJ, Shannak, K, Rajput, A, Deck, JHN, Hornykiewicz, O. Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson’s disease. J Neurochem 1992; 58: 642648.Google Scholar
45. Lee, CS, Schulzer, M, Mak, EK, et al. Clinical observations on the rate of progression of idiopathic parkinsonism. Brain 1994; 117: 501507.CrossRefGoogle ScholarPubMed
46. Calne, DB. Is idiopathic parkinsonism the consequence of an event or a process? Neurology 1994; 44: 410.Google Scholar
47. Schulzer, M, Lee, CS, Mak, EK, Vingerhoets, FJG, Calne, DB. A mathematical model of pathogenesis in idiopathic parkinsonism. Brain 1994; 117: 509516.Google Scholar
48. Hallman, H, Lange, J, Olson, L, Stromberg, I, Jonsson, G. Neurochemical and histochemical characterization of neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurones in the mouse. J Neurochem 1985; 44: 117127.Google Scholar
49. Willis, GL, Donnan, GA. Histochemical, biochemical and behavioural consequences of MPTP treatment in C-57 black mice. Brain Res 1987; 402: 269274.Google Scholar
50. Kalaria, RN, Mitchell, MJ, Harik, SI. Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity. Proc Natl Acad Sci USA 1987; 84: 35213525.Google Scholar
51. Giovanni, A, Sonsalla, PK, Heikkila, RE. Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine. 2. Central administration of 1-methyl-4-phenylpyri-dinium. J Pharmacol Exp Therap 1994; 270: 10081014.Google Scholar
52. Heikkila, RE, Nicklas, WJ, Duvoisin, RC. Dopaminergic toxicity after the stereotaxic adminstration of the 1-methyl-4-phenylpyridinium ion (MPP+) to rats. Neurosci Lett 1985; 59: 135140.CrossRefGoogle Scholar
53. Bradbury, AJ, Costall, B, Domeny, AM, et al. 1-methyl-4-phenylpyri-dine is neurotoxic to the nigrostriatal dopamine pathway. Nature 1986; 319: 5657.Google Scholar
54. Gerlach, M, Riederer, P, Przuntek, H, Youdim, MBH. MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease. Eur J Pharmacol 1991; 208: 273286.Google Scholar
55. McNaught, KS, Thull, U, Carrupt, PA, et al. Inhibition of complex I by isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Biochem Pharmacol 1995; 50: 19031911.Google Scholar
56. Maruyama, W, Naoi, M, Kasamatsu, T, et al. An endogenous dopaminergic neurotoxin, N-methyl-(R)-salsolinol, induces DNA damage in human dopaminergic neuroblastoma SH-SY5Y cells. J Neurochem 1997; 69: 322329.Google Scholar
57. Turski, L, Bressler, K, Rettig, K-J, Loschmann, P-A, Wachtel, H. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 1991; 349: 414418.Google Scholar
58. Sawada, H, Shimohama, S, Tamura, Y, Kawamura, T, Akaike, A, Kimura, J. Methylphenylpyridinium ion (MPP+) enhances gluta-mate-induced cytotoxicity against dopaminergic neurons in cultured rat mesencephalon. J Neurosci Res 1996; 43: 5562.Google Scholar
59. Beal, MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 1995; 38: 357366.CrossRefGoogle ScholarPubMed
60. Piallat, B, Benazzouz, A, Benabid, AL. Subthalamic nucleus lesion in rats prevents dopaminergic nigral neuron degeneration after stri-atal 6-OHDA injection: behavioural and immunohistochemical studies. Eur J Neurosci 1996; 8: 14081414.Google Scholar
61. Uitti, RJ, Rajput, AH, Ahlskog, JE, et al. Amantadine treatment is an independent predictor of improved survival in Parkinson’s disease. Neurology 1996; 46: 15511556.CrossRefGoogle ScholarPubMed
62. Sian, J, Dexter, DT, Lees, AJ, et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 1994; 36: 348355.Google Scholar
63. Dexter, DT, Sian, J, Rose, S, et al. Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol 1994; 35: 3844.CrossRefGoogle ScholarPubMed
64. Sian, J, Dexter, DT, Lees, AJ, Daniel, S, Jenner, P, Marsden, CD. Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 1994; 36: 356361.CrossRefGoogle ScholarPubMed
65. Olanow, CW, Cohen, G, Perl, DP, Marsden, CD Role of iron and oxidant stress in the normal and parkinsonian brain. Ann Neurol 1992; 32: S1-S145.(Abstract)Google Scholar
66. Youdim, MBH, Ben-Shachar, D, Riederer, P. The possible role of iron in the etiopathology of Parkinson’s disease. Mov Disord 1993; 8: 112.Google Scholar
67. Rosen, DR, Siddique, T, Patterson, D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 5962.Google Scholar
68. Gurney, ME, Pu, H, Chiu, AY, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994; 264: 17721775.Google Scholar
69. Beckman, JS, Chen, J, Crow, JP, Ye, YZ. Reactions of nitric oxide, superoxide and peroxynitrite with superoxide dismutase in neurodegeneration. Prog Brain Res 1994; 103: 371380.Google Scholar
69a. Dexter, DT, Carayon, A, Javoy-Agid, F, Agid, Y, Wells, FR, Daniel, SE, Lees, AJ, Jenner, P, Marsden, CD. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 1991; 114: 19531975.Google Scholar
69b. Mann, VM, Cooper, JM, Daniel, SE, Srai, K, Jenner, P, Marsden, CD, Schapira, AH. Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann. Neurol. 1994; 36: 876881.Google Scholar
70. Toffa, S, Kunikowska, GM, Zeng, BY, Jenner, P, Marsden, CD. Glutathione depletion in rat brain does not cause nigrostriatal pathway degeneration. J Neural Transm 1997; 104: 6775.Google Scholar
71. Wullner, U, Loschmann, PA, Schulz, JB, et al. Glutathione depletion potentiates MPTP and MPP+ toxicity in nigral dopaminergic neurons. NeuroReport 1996; 7: 921923.Google Scholar
72. Li, YH, Maher, P, Schubert, D. A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 1997; 19: 453463.Google Scholar
73. Dexter, DT, Holley, AE, Flitter, WD, et al. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 1994; 9: 9297.Google Scholar
74. Sanchez-Ramos, JR, Overvik, E, Ames, BN. A marker of oxyradical-mediated DNA damage (8-hydroxy-2’-deoxyguanosine) is increased in nigrostriatum of Parkinson’s disease brain. Neurodegeneration 1994; 3: 197204.Google Scholar
75. DiMauro, S. Mitochondrial involvement in Parkinson’s disease: the controversy continues. Neurology 1993; 43: 21702172.Google Scholar
76. Schapira, AHV. Evidence for mitochondrial dysfunction in Parkinson’s disease – a critical reappraisal. Mov Disord 1994; 9: 125138.Google Scholar
77. Przedborski, S, Kostic, V, Jackson-Lewis, V, et al. Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuro-toxicity. J Neurosci 1992; 12: 16581667.Google Scholar
78. Ferrante, RJ, Schulz, JB, Kowall, NW, Beall, MF. Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra. Brain Res 1997; 753: 157162.Google Scholar
79. Calne, DB. The free radical hypothesis in idiopathic parkinsonism: evidence against it. Ann Neurol 1992; 32: 799803.CrossRefGoogle Scholar
80. Fahn, S, Cohen, G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 1992; 32: 804812.Google Scholar
81. Jenner, P, Schapira, AHV, Marsden, CD. New insights into the cause of Parkinson’s disease. Neurology 1992; 42: 22412250.Google Scholar
82. Parkinson Study Group. Impact of deprenyl and tocopherol treatment on Parkinson’s disease in DATATOP subjects not requiring levodopa. Ann Neurol 1996; 39: 2936.CrossRefGoogle Scholar
83. Dexter, DT, Brooks, DJ, Harding, AE, et al. Nigrostriatal function in vitamin E deficiency: clinical, experimental, and positron emission tomographic studies. Ann Neurol 1995; 35: 298303.Google Scholar
84. Mena, MA, Davila, V, Sulzer, D. Neurotrophic effects of L-dopa in postnatal midbrain dopamine/cortical astrocyte cocultures. J Neurochem 1997; 69: 13981408.Google Scholar
85. Agid, Y. Levodopa. Is toxicity a myth? Neurology 1998; 50: 858863.Google Scholar
86. Murer, MG, Dziewczapolski, G, Menalled, LB, et al. Chronic levodopa is not toxic for remaining dopamine neurons, but instead promotes their recovery, in rats with moderate nigrostriatal lesions. Ann Neurol 1998; 43: 561575.Google Scholar
87. Rajput, AH, Uitti, RJ, Rajput, A, Offord, KP. Timely levodopa (LD) administration prolongs survival in Parkinson’s disease. Parkinsonism Rel Disord 1997; 3: 159165.Google Scholar
88. Przuntek, H, Welzel, D, Blumner, E, et al. Bromocriptine lessens the incidence of mortality in L-Dopa- treated parkinsonian patients: PRADO-study discontinued. Eur J Clin Pharmacol 1992; 43: 357363.Google Scholar
89. Hyman, C, Hofer, M, Barde, YA, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991; 350: 230232.Google Scholar
90. Lin, L-FH, Doherty, DH, Lile, JD, Bektesh, S, Collins, F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopamin-ergic neurons. Science 1993; 260: 11301132.Google Scholar
91. Tomac, A, Widenfalk, J, Lin, L-FH, et al. Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc Natl Acad Sci USA 1995; 92: 82748278.Google Scholar
92. Tomac, A, Lindquist, E, Lin, L-FH, et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 1995; 373: 335339.Google Scholar
93. Beck, KD, Valverde, J, Alexi, T, et al. Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 1995; 373: 339341.Google Scholar
94. Lindner, MD, Winn, SR, Baetge, EE, et al. Implantation of encapsulated catecholamine and GDNF-producing cells in rats with unilateral dopamine depletions and parkinsonian symptoms. Exp Neurol 1995; 132: 6276.CrossRefGoogle ScholarPubMed
95. Choi-Lundberg, DL, Lin, Q, Chang, YN, et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 1997; 275: 838841.CrossRefGoogle ScholarPubMed
96. Steiner, JP, Hamilton, GS, Ross, DT, et al. Neurotrophic immunophilin ligands stimulate structural and functional recovery in neurodegenerative animal models. Proc Natl Acad Sci USA 1997; 94: 20192024.Google Scholar
97. Wang, MZ, Jin, P, Bumcrot, DA, et al. Induction of dopaminergic neuron phenotype in the midbrain by Sonic hedgehog protein. Nature Medicine 1995; 1: 11841188.Google Scholar
98. Horger, BA, Nishimura, MC, Armanini, MP, et al. Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci 1998; 18: 49294937.CrossRefGoogle ScholarPubMed
99. Zetterstrom, RH, Solomin, L, Jansson, L, Hoffer, BJ, Olson, L, Perlmann, T. Dopamine neuron agenesis in Nurr1-deficient mice. Science 1997; 276: 248250.Google Scholar
100. Tooyama, I, Kawamata, T, Walker, D, et al. Loss of basic fibroblast growth factor in substantia nigra neurons in Parkinson’s disease. Neurology 1993; 43: 372376.Google Scholar
101. Gagliardini, V, Fernandez, P-A, Lee, RKK, et al. Prevention of vertebrate neuronal death by the crmA gene. Science 1994; 263: 826828.Google Scholar
102. Bump, NJ, Hackett, M, Hugunin, M, et al. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 1995; 269: 18851888.Google Scholar
103. Milligan, CE, Prevette, D, Yaginuma, H, et al. Peptide inhibitors of the ICE protease family arrest programmed cell death of motoneurons in vivo and in vitro. Neuron 1995; 15: 385393.Google Scholar
104. Barinaga, M. Death by dozens of cuts. Science 1998; 280: 3234.Google Scholar
105. Mochizuki, H, Goto, K, Mori, H, Mizuno, Y. Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 1996; 137: 120123.Google Scholar
106. Tompkins, MM, Basgall, EJ, Zamrini, E, Hill, WD. Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 1997; 150: 119131.Google ScholarPubMed
107. Anglade, P, Vyas, S, Javoy-Agid, F, et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 1997; 12: 2531.Google Scholar
108. Kosel, S, Egensperger, R, vonEitzen, U, Mehraein, P, Graeber, MB. On the question of apoptosis in the parkinsonian substantia nigra. Acta Neuropathol 1998; 93: 105108.Google Scholar
109. Mogi, M, Harada, M, Kondo, T, et al. Bcl-2 protein is increased in the brain from parkinsonian patients. Neurosci Lett 1996; 215: 137139.Google Scholar
110. Troy, CM, Shelanski, ML. Down-regulation of copper/zinc superoxide dismutase causes apoptotic death in PC12 neuronal cells. Proc Natl Acad Sci USA 1994; 91: 63846387.Google Scholar
111. Hartley, A, Stone, JM, Heron, C, Cooper, JM, Schapira, AHV. Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease. J Neurochem 1994; 63: 19871990.Google Scholar
112. Ziv, I, Melamed, E, Nardi, N, et al. Dopamine induces apoptosis-like cell death in cultured chick sympathetic neurons – a possible novel pathogenetic mechanism in Parkinson’s disease. Neurosci Lett 1994; 170: 136140.Google Scholar
113. Tatton, NA, Kish, SJ. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine-treated mice using terminal deoxynucleotidyl trans-ferase labelling and acridine orange staining. Neuroscience 1997; 77: 10371048.Google Scholar
114. Bonfoco, E, Krainc, D, Ankarcrona, M, Nicotera, P, Lipton, SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 1995; 92: 71627166.Google Scholar
115. Estevez, AG, Radi, R, Barbeito, L, Shin, JT, Thompson, JA, Beckman, JS. Peroxynitrite-induced cytotoxicity in PC12 cells: evidence for an apoptotic mechanism differentially modulated by neurotroph-ic factors. J Neurochem 1995; 65: 15431550.Google Scholar
116. Hunot, S, Brugg, B, Ricard, D, et al. Nuclear translocation of NF-KB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 1997; 94: 75317536.Google Scholar
117. Patil, N, Cox, DR, Bhat, D, Faham, M, Myers, RM, Peterson, AS. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genetics 1995; 11: 126129.Google Scholar