Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-t7hbd Total loading time: 0.279 Render date: 2022-05-20T17:17:42.508Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Determinants of Leptomeningeal Collateral Status Variability in Ischemic Stroke Patients

Published online by Cambridge University Press:  29 September 2021

Alexander D. Rebchuk*
Affiliation:
Division of Neurosurgery, University of British Columbia, Vancouver, BC, Canada
Thalia S. Field
Affiliation:
Division of Neurology, University of British Columbia, Vancouver, BC, Canada Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada Vancouver Stroke Program, Vancouver, BC, Canada
Michael D. Hill
Affiliation:
Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Calgary Stroke Program, University of Calgary, Calgary, AB, Canada Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
Mayank Goyal
Affiliation:
Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Calgary Stroke Program, University of Calgary, Calgary, AB, Canada Department of Radiology, University of Calgary, Calgary, AB, Canada
Andrew Demchuk
Affiliation:
Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Calgary Stroke Program, University of Calgary, Calgary, AB, Canada
Jessalyn K. Holodinsky
Affiliation:
Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
Enrico Fainardi
Affiliation:
Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
Jai Shankar
Affiliation:
Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
Mohamed Najm
Affiliation:
Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
Marta Rubiera
Affiliation:
Neurology Department, Hospital Vall d’Hebron, Barcelona, Spain
Alexander V. Khaw
Affiliation:
Department of Clinical Neurosciences, University of Western Ontario, London, ON, Canada
Wu Qiu
Affiliation:
Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
Bijoy K. Menon
Affiliation:
Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada Calgary Stroke Program, University of Calgary, Calgary, AB, Canada Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada Department of Radiology, University of Calgary, Calgary, AB, Canada
*
Correspondence to: Alex Rebchuk, MD, MSc, Division of Neurosurgery, University of British Columbia, 11115-2775 Laurel Street, Vancouver, BCV5Z 1M9, Canada. Email: a.rebchuk@alumni.ubc.ca

Abstract:

Background:

Collateral status is an indicator of a favorable outcome in stroke. Leptomeningeal collaterals provide alternative routes for brain perfusion following an arterial occlusion or flow-limiting stenosis. Using a large cohort of ischemic stroke patients, we examined the relative contribution of various demographic, laboratory, and clinical variables in explaining variability in collateral status.

Methods:

Patients with acute ischemic stroke in the anterior circulation were enrolled in a multi-center hospital-based observational study. Intracranial occlusions and collateral status were identified and graded using multiphase computed tomography angiography. Based on the percentage of affected territory filled by collateral supply, collaterals were graded as either poor (0–49%), good (50–99%), or optimal (100%). Between-group differences in demographic, laboratory, and clinical factors were explored using ordinal regression models. Further, we explored the contribution of measured variables in explaining variance in collateral status.

Results:

386 patients with collateral status classified as poor (n = 64), good (n = 125), and optimal (n = 197) were included. Median time from symptom onset to CT was 120 (IQR: 78–246) minutes. In final multivariable model, male sex (OR 1.9, 95% CIs [1.2, 2.9], p = 0.005) and leukocytosis (OR 1.1, 95% CIs [1.1, 1.2], p = 0.001) were associated with poor collaterals. Measured variables only explained 44.8–53.0% of the observed between-patient variance in collaterals.

Conclusion:

Male sex and leukocytosis are associated with poorer collaterals. Nearly half of the variance in collateral flow remains unexplained and could be in part due to genetic differences.

Résumé :

RÉSUMÉ :

Déterminants de la variabilité de l’état collatéral leptoméningé dans l’accident vasculaire cérébral ischémique.

Contexte :

L’état de la circulation collatérale est un indicateur d’une issue favorable dans l’accident vasculaire cérébral (AVC). Les vaisseaux collatéraux leptoméningés offrent d’autres voies d’apport sanguin, ce qui rend possible l’irrigation du cerveau à la suite d’une oblitération artérielle ou d’une sténose artérielle à flux limitant. L’étude, réalisée dans une cohorte imposante de patients ayant subi un AVC ischémique, visait à déterminer la valeur relative de facteurs démographiques, techniques (laboratoires) et cliniques dans la variabilité de l’état de la circulation collatérale.

Méthode :

Il s’agit d’une étude d’observation, multicentrique, effectuée en milieu hospitalier, à laquelle ont participé des patients ayant subi un AVC ischémique aigu dans le territoire de la circulation antérieure. Il y a d’abord eu repérage de l’occlusion intracrânienne, puis évaluation de l’état de la circulation collatérale, par angiographie par tomodensitométrie (TDM) multiphase. L’état des vaisseaux collatéraux a été classé comme suit : médiocre (0-49 %), bon (50-99 %) ou maximal (100 %), d’après le pourcentage de remplissage du territoire affecté par l’apport de sang collatéral. Quant aux différences d’ordre démographique, technique (laboratoires) et clinique entre les groupes, elles ont été analysées à l’aide de modèles de régression ordinale. De plus, nous nous sommes penchés sur le poids relatif des variables mesurées afin de tenter d’expliquer les différences relevées dans l’état de la circulation collatérale.

Résultats :

Au total, 386 patients ont participé à l’étude, et l’état de la circulation collatérale a été classé comme suit : médiocre (n = 64), bon (n = 125) ou maximal (n = 197). Le temps médian écoulé depuis l’apparition des symptômes jusqu’à la TDM était de 120 minutes (intervalle interquartile : 78-246). D’après le modèle multivariable final, le sexe masculin (risque relatif approché [RRA] : 1,9; IC à 95 % : 1,2-2,9]; p = 0,005) et la leucocytose (RRA : 1,1; IC à 95 % : 1,1-1,2; p = 0,001) ont été associés à une circulation collatérale médiocre. Toutefois, les variables mesurées ne permettent d’expliquer, que dans une proportion de 44,8 à 53,0 %, les différences enregistrées entre les patients en ce qui concerne les vaisseaux collatéraux.

Conclusion :

Le sexe masculin et la leucocytose ont été associés à une circulation collatérale médiocre. Cependant, près de la moitié des écarts relatifs à la circulation collatérale restent inexpliqués, et les variations pourraient dépendre en partie de différences génétiques.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Canadian Journal of Neurological Sciences Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liebeskind, DS. Collateral circulation. Stroke. 2003;34:2279–84.CrossRefGoogle ScholarPubMed
Menon, BK, Smith, EE, Modi, J, et al. Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. Am J Neuroradiol. 2011;32:1640–5.CrossRefGoogle Scholar
Liebeskind, DS, Tomsick, TA, Foster, LD, et al. Collaterals at angiography and outcomes in the Interventional Management of Stroke (IMS) III trial. Stroke. 2014;45:759–64.CrossRefGoogle ScholarPubMed
Nannoni, S, Sirimarco, G, Cereda, CW, et al. Determining factors of better leptomeningeal collaterals: a study of 857 consecutive acute ischemic stroke patients. J Neurol. 2019;266:582–8.CrossRefGoogle ScholarPubMed
Zhang, H, Prabhakar, P, Sealock, R, Faber, JE. Wide genetic variation in the native pial collateral circulation is a major determinant of variation in severity of stroke. J Cereb Blood Flow Metab. 2010;30:923–34.CrossRefGoogle ScholarPubMed
Wang, S, Zhang, H, Wiltshire, T, Sealock, R, Faber, JE. Genetic dissection of the Canq1 locus governing variation in extent of the collateral circulation. PLoS One. 2012;7:e31910.CrossRefGoogle ScholarPubMed
Lucitti, JL, Sealock, R, Buckley, BK, et al. Variants of Rab GTPase-effector binding protein-2 cause variation in the collateral circulation and severity of stroke. Stroke. 2016;47:3022–31. DOI 10.1161/STROKEAHA.116.014160.CrossRefGoogle ScholarPubMed
Malik, N, Hou, Q, Vagal, A, et al. Demographic and clinical predictors of leptomeningeal collaterals in stroke patients. J Stroke Cerebrovasc Dis. 2014;23:2018–22.CrossRefGoogle ScholarPubMed
Menon, BK, Smith, EE, Coutts, SB, et al. Leptomeningeal collaterals are associated with modifiable metabolic risk factors. Ann Neurol. 2013;74:241–8.Google ScholarPubMed
Ospel, JM, Volny, O, Qiu, W, et al. Displaying multiphase CT angiography using a time-variant color map: practical considerations and potential applications in patients with acute stroke. Am J Neuroradiol. 2020;41:200–5.CrossRefGoogle ScholarPubMed
Verdolotti, T, Pilato, F, Cottonaro, S, et al. ColorViz, a new and rapid tool for assessing collateral circulation during stroke. Brain Sci. 2020;10:882.CrossRefGoogle ScholarPubMed
Tan, JC, Dillon, WP, Liu, S, Adler, F, Smith, WS, Wintermark, M. Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol. 2007;61:533–43.CrossRefGoogle ScholarPubMed
Yeo, LLL, Paliwal, P, Teoh, HL, et al. Assessment of intracranial collaterals on CT angiography in anterior circulation acute ischemic stroke. Am J Neuroradiol. 2015;36:289–94.CrossRefGoogle Scholar
Prabhakar, P, Zhang, H, Chen, D, Faber, JE. Genetic variation in retinal vascular patterning predicts variation in pial collateral extent and stroke severity. Angiogenesis. 2015;18:97114.CrossRefGoogle ScholarPubMed
Wang, S, Zhang, H, Dai, X, Sealock, R, Faber, JE. Genetic architecture underlying variation in extent and remodeling of the collateral circulation. Circ Res. 2010;107:558–68.CrossRefGoogle ScholarPubMed
Okyere, B, Giridhar, K, Hazy, A, et al. Endothelial-specific EphA4 negatively regulates native pial collateral formation and re-perfusion following hindlimb ischemia. PLoS One. 2016;11:e0159930.CrossRefGoogle ScholarPubMed
Faber, JE, Moore, SM, Lucitti, JL, Aghajanian, A, Zhang, H. Sex differences in the cerebral collateral circulation. Transl Stroke Res. 2017;8:273–83.CrossRefGoogle ScholarPubMed
Liu, F, McCullough, LD. Interactions between age, sex, and hormones in experimental ischemic stroke. Neurochem Int. 2012;61:1255–65.CrossRefGoogle ScholarPubMed
Costanian, C, McCague, H, Tamim, H. Age at natural menopause and its associated factors in Canada: cross-sectional analyses from the Canadian Longitudinal Study on Aging. Menopause. 2018;25:265–72.CrossRefGoogle ScholarPubMed
Danton, GH, Dietrich, WD. Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol. 2003;62:127–36.CrossRefGoogle ScholarPubMed
Iadecola, C, Anrather, J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17:796808.CrossRefGoogle Scholar
Buck, BH, Liebeskind, DS, Saver, JL, et al. Early neutrophilia is associated with volume of ischemic tissue in acute stroke. Stroke. 2008;39:355–60.CrossRefGoogle ScholarPubMed
Liu, H, Wang, R, Shi, J, et al. Baseline neutrophil counts and neutrophil ratio may predict a poor clinical outcome in minor stroke patients with intravenous thrombolysis. J Stroke Cerebrovasc Dis. 2019;28:104340.CrossRefGoogle ScholarPubMed
Faber, JE, Zhang, H, Lassance-Soares, RM, et al. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler Thromb Vasc Biol. 2011;31:1748–56.CrossRefGoogle ScholarPubMed
Dai, X, Faber, JE. Endothelial nitric oxide synthase deficiency causes collateral vessel rarefaction and impairs activation of a cell cycle gene network during arteriogenesis. Circ Res. 2010;106:1870–81. DOI 10.1161/CIRCRESAHA.109.212746.CrossRefGoogle ScholarPubMed
Epstein, SE, Lassance-Soares, RM, Faber, JE, Burnett, MS. Effects of aging on the collateral circulation, and therapeutic implications. Circulation. 2012;125:3211–9.CrossRefGoogle ScholarPubMed
Holmstedt, CA, Turan, TN, Chimowitz, MI. Atherosclerotic intracranial arterial stenosis: risk factors, diagnosis, and treatment. Lancet Neurol. 2013;12:1106–14.CrossRefGoogle ScholarPubMed
Supplementary material: File

Rebchuk et al. supplementary material

Rebchuk et al. supplementary material

Download Rebchuk et al. supplementary material(File)
File 15 KB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Determinants of Leptomeningeal Collateral Status Variability in Ischemic Stroke Patients
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Determinants of Leptomeningeal Collateral Status Variability in Ischemic Stroke Patients
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Determinants of Leptomeningeal Collateral Status Variability in Ischemic Stroke Patients
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *